1.Bioinformatics analysis of the RNA binding protein DDX39 of Toxoplasma gondii.
Z YANG ; J WANG ; Y QI ; X TIAN ; X MEI ; Z ZHANG ; S WANG
Chinese Journal of Schistosomiasis Control 2023;35(4):358-365
OBJECTIVE:
To analyze the RNA binding protein of Toxoplasma gondii (TgDDX39) using bioinformatics technology, and to evaluate the immunogenicity of TgDDX39, so as to provide insights into development of toxoplasmosis vaccines.
METHODS:
The amino acid sequences of TgDDX39 were retrieved from the ToxoDB database, and the physicochemical properties, transmembrane structure domain, signal peptide sites, post-translational modification sites, coils, secondary and tertiary structures, hydrophobicity, and antigenic epitopes of the TgDDX39 protein were predicted using online bioinformatics tools, incluiding ProtParam, TMHMM 2.0, SignalP 5.0, NetPhos 3.1, COILS, SOPMA, Phyre2, ProtScale, ABCpred, SYFPEITHI and DNA-STAR.
RESULTS:
TgDDX39 protein was predicted to be an unstable hydrophilic protein with the molecular formula of C2173H3458N598O661S18, which contained 434 amino acids and had an estimated molecular weight of 49.1 kDa and a theoretical isoelectric point of 5.55. The protein was predicted to have an extremely low possibility of signal peptides, without transmembrane regions, and contain 27 phosphorylation sites. The β turn and random coils accounted for 39.63% of the secondary structure of the TgDDX39 protein, and a coiled helix tended to produce in one site. In addition, the TgDDX39 protein contained multiple B and T cell antigenic epitopes.
CONCLUSIONS
Bioinformatics analyses predict that TgDDX39 protein has high immunogenicity and contains multiple antigenic epitopes. TgDDX39 protein is a potential candidate antigen for vaccine development.
Humans
;
Toxoplasma/metabolism*
;
Toxoplasmosis/prevention & control*
;
Vaccines
;
Epitopes, T-Lymphocyte
;
Computational Biology
;
Protozoan Proteins/chemistry*
2.New Molecules in Babesia gibsoni and Their Application for Diagnosis, Vaccine Development, and Drug Discovery.
The Korean Journal of Parasitology 2014;52(4):345-353
Babesia gibsoni is an intraerythrocytic apicomplexan parasite that causes piroplasmosis in dogs. B. gibsoni infection is characterized clinically by fever, regenerative anemia, splenomegaly, and sometimes death. Since no vaccine is available, rapid and accurate diagnosis and prompt treatment of infected animals are required to control this disease. Over the past decade, several candidate molecules have been identified using biomolecular techniques in the authors' laboratory for the development of a serodiagnostic method, vaccine, and drug for B. gibsoni. This review article describes newly identified candidate molecules and their applications for diagnosis, vaccine production, and drug development of B. gibsoni.
Animals
;
Antigens, Protozoan/*diagnostic use/*immunology
;
Antiprotozoal Agents/*isolation & purification/pharmacology
;
Babesia/*drug effects/immunology/*isolation & purification
;
Babesiosis/*diagnosis/drug therapy/prevention & control
;
Dogs
;
Drug Discovery/methods
;
Protozoan Vaccines/*immunology
3.Recent Advances in Toxoplasma gondii Immunotherapeutics.
Sherene Swee Yin LIM ; Rofina Yasmin OTHMAN
The Korean Journal of Parasitology 2014;52(6):581-593
Toxoplasmosis is an opportunistic infection caused by the protozoan parasite Toxoplasma gondii. T. gondii is widespread globally and causes severe diseases in individuals with impaired immune defences as well as congenitally infected infants. The high prevalence rate in some parts of the world such as South America and Africa, coupled with the current drug treatments that trigger hypersensitivity reactions, makes the development of immunotherapeutics intervention a highly important research priority. Immunotherapeutics strategies could either be a vaccine which would confer a pre-emptive immunity to infection, or passive immunization in cases of disease recrudescence or recurrent clinical diseases. As the severity of clinical manifestations is often greater in developing nations, the development of well-tolerated and safe immunotherapeutics becomes not only a scientific pursuit, but a humanitarian enterprise. In the last few years, much progress has been made in vaccine research with new antigens, novel adjuvants, and innovative vaccine delivery such as nanoparticles and antigen encapsulations. A literature search over the past 5 years showed that most experimental studies were focused on DNA vaccination at 52%, followed by protein vaccination which formed 36% of the studies, live attenuated vaccinations at 9%, and heterologous vaccination at 3%; while there were few on passive immunization. Recent progress in studies on vaccination, passive immunization, as well as insights gained from these immunotherapeutics is highlighted in this review.
Drug Discovery/trends
;
Global Health
;
Humans
;
Immunization/*methods
;
Immunotherapy/*methods/trends
;
Protozoan Vaccines/immunology/isolation & purification
;
Toxoplasma/*immunology
;
Toxoplasmosis/*therapy
4.A Novel Recombinant BCG Vaccine Encoding Eimeria tenella Rhomboid and Chicken IL-2 Induces Protective Immunity Against Coccidiosis.
Qiuyue WANG ; Lifeng CHEN ; Jianhua LI ; Jun ZHENG ; Ning CAI ; Pengtao GONG ; Shuhong LI ; He LI ; Xichen ZHANG
The Korean Journal of Parasitology 2014;52(3):251-256
A novel recombinant Bacille Calmette-Guerin (rBCG) vaccine co-expressed Eimeria tenella rhomboid and cytokine chicken IL-2 (chIL-2) was constructed, and its efficacy against E. tenella challenge was observed. The rhomboid gene of E. tenella and chIL-2 gene were subcloned into integrative expression vector pMV361, producing vaccines rBCG pMV361-rho and pMV361-rho-IL2. Animal experiment via intranasal and subcutaneous route in chickens was carried out to evaluate the immune efficacy of the vaccines. The results indicated that these rBCG vaccines could obviously alleviate cacal lesions and oocyst output. Intranasal immunization with pMV361-rho and pMV361-rho-IL2 elicited better protective immunity against E. tenella than subcutaneous immunization. Splenocytes from chickens immunized with either rBCG pMV361-rho and pMV361-rho-IL2 had increased CD4+ and CD8+ cell production. Our data indicate recombinant BCG is able to impart partial protection against E. tenella challenge and co-expression of cytokine with antigen was an effective strategy to improve vaccine immunity.
Adjuvants, Immunologic/genetics/*metabolism
;
Administration, Intranasal
;
Animals
;
Antigens, Protozoan/genetics/*immunology
;
BCG Vaccine/administration & dosage/*genetics
;
CD4-Positive T-Lymphocytes/immunology
;
CD8-Positive T-Lymphocytes/immunology
;
Chickens
;
Coccidiosis/*prevention & control
;
Disease Models, Animal
;
Drug Carriers/administration & dosage
;
Eimeria tenella/genetics/*immunology
;
Genetic Vectors
;
Injections, Subcutaneous
;
Interleukin-2/genetics/*metabolism
;
Protozoan Vaccines/administration & dosage/genetics/*immunology
;
Spleen/immunology
;
Vaccines, Synthetic/administration & dosage/genetics/immunology
5.Efficacy of a DNA Vaccine Carrying Eimeria maxima Gam56 Antigen Gene against Coccidiosis in Chickens.
Jinjun XU ; Yan ZHANG ; Jianping TAO
The Korean Journal of Parasitology 2013;51(2):147-154
To control coccidiosis without using prophylactic medications, a DNA vaccine targeting the gametophyte antigen Gam56 from Eimeria maxima in chickens was constructed, and the immunogenicity and protective effects were evaluated. The ORF of Gam56 gene was cloned into an eukaryotic expression vector pcDNA3.1(zeo)+. Expression of Gam56 protein in COS-7 cells transfected with recombinant plasmid pcDNA-Gam56 was confirmed by indirect immunofluorescence assay. The DNA vaccine was injected intramuscularly to yellow feathered broilers of 1-week old at 3 dosages (25, 50, and 100 microg/chick). Injection was repeated once 1 week later. One week after the second injection, birds were challenged orally with 5x10(4) sporulated oocysts of E. maxima, then weighed and killed at day 8 post challenge. Blood samples were collected and examined for specific peripheral blood lymphocyte proliferation activity and serum antibody levels. Compared with control groups, the administration of pcDNA-Gam56 vaccine markedly increased the lymphocyte proliferation activity (P<0.05) at day 7 and 14 after the first immunization. The level of lymphocyte proliferation started to decrease on day 21 after the first immunization. A similar trend was seen in specific antibody levels. Among the 3 pcDNA-Gam56 immunized groups, the median dosage group displayed the highest lymphocyte proliferation and antibody levels (P<0.05). The median dosage group had the greatest relative body weight gain (89.7%), and the greatest oocyst shedding reduction (53.7%). These results indicate that median dosage of DNA vaccine had good immunogenicity and immune protection effects, and may be used in field applications for coccidiosis control.
Animals
;
Antibodies, Protozoan/blood
;
Antigens, Protozoan/genetics/*immunology
;
Cell Proliferation
;
Chickens
;
Coccidiosis/immunology/pathology/*prevention & control
;
Disease Models, Animal
;
Eimeria/genetics/*immunology
;
Injections, Intramuscular
;
Lymphocytes/immunology
;
Protozoan Vaccines/administration & dosage/genetics/*immunology
;
Vaccination/methods
;
Vaccines, DNA/administration & dosage/genetics/*immunology
6.CD8+ T-cell Activation in Mice Injected with a Plasmid DNA Vaccine Encoding AMA-1 of the Reemerging Korean Plasmodium vivax.
Hyo Jin KIM ; Bong Kwang JUNG ; Jin Joo LEE ; Kyoung Ho PYO ; Tae Yun KIM ; Byung il CHOI ; Tae Woo KIM ; Hajime HISAEDA ; Kunisuke HIMENO ; Eun Hee SHIN ; Jong Yil CHAI
The Korean Journal of Parasitology 2011;49(1):85-90
Relatively little has been studied on the AMA-1 vaccine against Plasmodium vivax and on the plasmid DNA vaccine encoding P. vivax AMA-1 (PvAMA-1). In the present study, a plasmid DNA vaccine encoding AMA-1 of the reemerging Korean P. vivax has been constructed and a preliminary study was done on its cellular immunogenicity to recipient BALB/c mice. The PvAMA-1 gene was cloned and expressed in the plasmid vector UBpcAMA-1, and a protein band of approximately 56.8 kDa was obtained from the transfected COS7 cells. BALB/c mice were immunized intramuscularly or using a gene gun 4 times with the vaccine, and the proportions of splenic T-cell subsets were examined by fluorocytometry at week 2 after the last injection. The spleen cells from intramuscularly injected mice revealed no significant changes in the proportions of CD8+ T-cells and CD4+ T-cells. However, in mice immunized using a gene gun, significantly higher (P<0.05) proportions of CD8+ cells were observed compared to UB vector-injected control mice. The results indicated that cellular immunogenicity of the plasmid DNA vaccine encoding AMA-1 of the reemerging Korean P. vivax was weak when it was injected intramuscularly; however, a promising effect was observed using the gene gun injection technique.
Animals
;
Antigens, Protozoan/administration & dosage/genetics/*immunology
;
CD8-Positive T-Lymphocytes/*immunology
;
COS Cells
;
Cercopithecus aethiops
;
Humans
;
Lymphocyte Activation
;
Malaria, Vivax/*immunology/parasitology
;
Membrane Proteins/administration & dosage/genetics/*immunology
;
Mice
;
Mice, Inbred BALB C
;
Plasmodium vivax/genetics/*immunology
;
Protozoan Proteins/administration & dosage/genetics/*immunology
;
Protozoan Vaccines/administration & dosage/genetics/*immunology
;
Vaccines, DNA/administration & dosage/genetics/*immunology
7.Lambs Infected with UV-Attenuated Sporocysts of Sarcocystis ovicanis Produced Abnormal Sarcocysts and Induced Protective Immunity against a Challenge Infection.
Abdel Azeem ABDEL-BAKI ; Gamal ALLAM ; Thabet SAKRAN ; El Mahy EL-MALAH
The Korean Journal of Parasitology 2009;47(2):131-138
The present study surveyed the prevalence of natural infection of the sheep esphagus muscle with sarcocysts of Sarcocystis ovicanis and examined induction of protective immunity using UV-attenuated sporocysts. The overall prevalence of natural infection of the sheep was 95%. Infectivity of the collected sarcocysts was confirmed by shedding of sporulated oocysts after feeding infected esophageal tissues to dogs. To induce protective immunity, lambs were immunized 3 times (once a week) with 1.5 x 10(4) sporocysts exposed to UV-light for 30 min (UV-30 group) or 60 (UV-60 group) min and then challenged with 1.5 x 10(4) normal sporocysts at the 3rd week post the 1st vaccination. These lambs showed high survival and less clinical signs of sarcocystosis than normal infected lambs. The attenuated sporocysts produced abnormal cysts; small in size and detached from the muscle fiber. These abnormalities were more obvious in UV-60 group than UV-30 group. Also, the IFN-gamma level and lymphocyte percentage were increased while the total leukocyte count was decreased in the UV-60 group compared with other groups. The high level of IFN-gamma may be an evidence for the induction of Th1 responses which may have protective effect against a challenge infection.
Animals
;
Dogs
;
Esophagus/parasitology
;
Feces/parasitology
;
Interferon-gamma/secretion
;
Lymphocytes/immunology
;
Oocysts/*immunology
;
Peptide Fragments/secretion
;
Prevalence
;
Protozoan Vaccines/immunology
;
Sarcocystis/cytology/*immunology/*radiation effects
;
Sarcocystosis/epidemiology/immunology/prevention & control/*veterinary
;
Severity of Illness Index
;
Sheep/immunology/parasitology
;
Sheep Diseases/immunology/*prevention & control
;
Survival Analysis
;
*Ultraviolet Rays
;
Vaccines, Attenuated/immunology
8.Protective effect of lectin from Synadenium carinatum on Leishmania amazonensis infection in BALB/c mice.
Sandra R AFONSO-CARDOSO ; Flavio H RODRIGUES ; Marcio AB GOMES ; Adriano G SILVA ; Ademir ROCHA ; Aparecida HB GUIMARAES ; Ignes CANDELORO ; Silvio FAVORETO ; Marcelo S FERREIRA ; Maria A SOUZA
The Korean Journal of Parasitology 2007;45(4):255-266
The protective effect of the Synadenium carinatum latex lectin (ScLL), and the possibility of using it as an adjuvant in murine model of vaccination against American cutaneous leishmaniasis, were evaluated. BALB/c mice were immunized with the lectin ScLL (10, 50, 100 microgram/animal) separately or in association with the soluble Leishmania amazonensis antigen (SLA). After a challenge infection with 10(6) promastigotes, the injury progression was monitored weekly by measuring the footpad swelling for 10 weeks. ScLL appeared to be capable of conferring partial protection to the animals, being most evident when ScLL was used in concentrations of 50 and 100 microgram/animal. Also the parasite load in the interior of macrophages showed significant reduction (61.7%) when compared to the control group. With regard to the cellular response, ScLL 50 and 100 microgram/animal stimulated the delayed-type hypersensitivity (DTH) reaction significantly (P < 0.05) higher than SLA or SLA plus ScLL 10 weeks after the challenge infection. The detection of high levels of IgG2a and the expression of mRNA cytokines, such as IFN-gamma, IL-12, and TNF-alpha (Th1 profiles), corroborated the protective role of this lectin against cutaneous leishmaniasis. This is the first report of the ScLL effect on leishmaniasis and shows a promising role for ScLL to be explored in other experimental models for treatment of leishmaniasis.
*Adjuvants, Immunologic
;
Animals
;
Antibodies, Protozoan/immunology
;
Antibody Formation
;
Antigens, Protozoan/immunology
;
Cytokines/genetics/immunology
;
Euphorbiaceae/*chemistry
;
Hypersensitivity, Delayed/immunology
;
Immunization
;
Immunoglobulin G/immunology
;
Latex/chemistry
;
Leishmania/immunology
;
Leishmaniasis, Cutaneous/*immunology/pathology
;
Mice
;
Mice, Inbred BALB C
;
Nitric Oxide Synthase Type II/genetics/immunology
;
Plant Lectins/*immunology/isolation & purification
;
Protozoan Vaccines/immunology/pharmacology
;
Skin/pathology
9.Protective efficacy of vaccination with Neospora caninum multiple recombinant antigens against experimental Neospora caninum infection.
Jung Hwa CHO ; Woo Suk CHUNG ; Kyoung Ju SONG ; Byoung Kuk NA ; Seung Won KANG ; Chul Yong SONG ; Tong Soo KIM
The Korean Journal of Parasitology 2005;43(1):19-25
Protective efficacy of vaccination with Neospora caninum multiple recombinant antigens against N. caninum infection was evaluated in vitro and in vivo. Two major immunodominant surface antigens (NcSAG1 and NcSRS2) and two dense granule proteins (NcDG1 and NcDG2) of N. caninum tachyzoites were expressed in E. coli, respectively. An in vitro neutralization assay using polyclonal antisera raised against each recombinant antigen showed inhibitory effects on the invasion of N. caninum tachyzoites into host cells. Separate groups of gerbils were immunized with the purified recombinant proteins singly or in combinations and animals were then challenged with N. caninum. Following these experimental challenges, the protective efficacy of each vaccination was determined by assessing animal survival rate. All experimental groups showed protective effects of different degrees against experimental infection. The highest protection efficacy was observed for combined vaccination with NcSRS2 and NcDG1. Our results indicate that combined vaccination with the N. caninum recombinant antigens, NcSRS2 and NcDG1, induces the highest protective effect against N. caninum infection in vitro and in vivo.
Animals
;
Antibodies, Protozoan/immunology
;
Antigens, Protozoan/immunology
;
Cercopithecus aethiops
;
Coccidiosis/prevention & control
;
Dose-Response Relationship, Immunologic
;
Gene Expression
;
Gerbillinae
;
Neospora/*immunology
;
Protozoan Vaccines/*immunology
;
Research Support, Non-U.S. Gov't
;
Vaccines, Synthetic/immunology
;
Vero Cells
10.Application of biotechnological tools for coccidia vaccine development.
Wongi MIN ; Rami A DALLOUL ; Hyun S LILLEHOJ
Journal of Veterinary Science 2004;5(4):279-288
Coccidiosis is a ubiquitous intestinal protozoan infection of poultry seriously impairing the growth and feed utilization of infected animals. Conventional disease control strategies have relied on prophylactic medication. Due to the continual emergence of drug resistant parasites in the field and increasing incidence of broiler condemnations due to coccidia, novel approaches are urgently needed to reduce economic losses. Understanding the basic biology of host-parasite interactions and protective intestinal immune mechanisms, as well as characterization of host and parasite genes and proteins involved in eliciting protective host responses are crucial for the development of new control strategy. This review will highlight recent developments in coccidiosis research with special emphasis on the utilization of cutting edge techniques in molecular/cell biology, immunology, and functional genomics in coccidia vaccine development. The information will enhance our understanding of host-parasite biology, mucosal immunology, and host and parasite genomics in the development of a practical and effective control strategy against Eimeria and design of nutritional interventions to maximize growth under the stress caused by vaccination or infection. Furthermore, successful identification of quantitative economic traits associated with disease resistance to coccidiosis will provide poultry breeders with a novel selection strategy for development of genetically stable, coccidiosis-resistant chickens, thereby increasing the production efficiency.
Animals
;
Biotechnology/methods
;
Chickens
;
Coccidiosis/prevention&control/*veterinary
;
Eimeria/*immunology
;
Poultry Diseases/parasitology/*prevention&control
;
*Protozoan Vaccines

Result Analysis
Print
Save
E-mail