1.Variations of glucose content in Massa Medicata Fermentata during processing based on quantitative proton nuclear magnetic resonance.
Ya-Ling SHI ; Lu-Yu SHAN ; Jing-Jing YANG ; Miao-Miao JIANG ; Hui-Juan YU ; Yue-Fei WANG ; Xin CHAI
China Journal of Chinese Materia Medica 2023;48(23):6396-6402
A quantitative proton nuclear magnetic resonance(qHNMR) method was established to determine the glucose content in commercially available Massa Medicata Fermentata(MMF) products and explore the variations of glucose content in MMF products during processing. The qHNMR spectrum of MMF in deuterium oxide was obtained with 2,2,3,3-d_4-3-(trimethylsilyl) propionate sodium salt as the internal standard substance. With the doublet peaks of terminal hydrogen of glucose with chemical shift at δ 4.65 and δ 5.24 as quantitative peaks, the content of glucose in MMF samples was determined. The glucose content showed a good linear relationship within the range of 0.10-6.44 mg·mL~(-1). The relative standard deviations(RSDs) of precision, stability, repeatability, and recovery for determination were all less than 2.3%. The glucose content varied in different commercially available MMF samples, which were associated with the different fermentation days, wheat bran-to-flour ratios, and processing methods. The glucose content in MMF first increased and then decreased over the fermentation time. Compared with the MMF products fermented with wheat bran or flour alone, the products fermented with both wheat bran and flour had increased glucose. The glucose content of bran-fried MMF was slightly lower than that of raw MMF, while the glucose content in charred MMF was extremely low. In conclusion, the qHNMR method established in this study is simple, fast, and accurate, serving as a new method for determining the glucose content in MMF. Furthermore, this study clarifies the variations of glucose content in MMF during processing, which can not only indicate the processing degree but also provide a scientific basis for revealing the fermentation mechanism and improving the quality control of MMF.
Protons
;
Drugs, Chinese Herbal/chemistry*
;
Dietary Fiber
;
Magnetic Resonance Spectroscopy
2.Research on Logic Design of Proton Treatment Control System.
Zhuofan CAI ; Rong XIE ; Jianchun DENG ; Zhiyong YANG
Chinese Journal of Medical Instrumentation 2023;47(4):370-376
The proton treatment control system is the supporting software of the proton therapy device, which specifically coordinates and controls the status and work of each subsystem. In this study, the software architecture and hardware implementation of the proton treatment control system was developed and built a foundation for the overall debugging. Using C# programming language and WPF programming techniques, TCP network communication protocol specified by the proton treatment technical document and MVVM pattern in Windows system, the logic design and implementation of each level were studied. Meanwhile, the communication interface between the subsystems under TCP communication protocol was agreed. The logic design and research of the setup field and treatment field were carried out. And the User Interface was designed and developed using the above technology. The program realizes the communication and interaction between the proton treatment control system and each subsystem, so as to control and monitor the whole treatment process. The proton treatment control system provides a software basis for the remote overall debugging and on-line monitor and control of proton treatment device.
Protons
;
User-Computer Interface
;
Software
;
Computers
;
Logic
3.Triggering of Major Brain Disorders by Protons and ATP: The Role of ASICs and P2X Receptors.
Andrii CHERNINSKYI ; Maksim STOROZHUK ; Oleksandr MAXIMYUK ; Vyacheslav KULYK ; Oleg KRISHTAL
Neuroscience Bulletin 2023;39(5):845-862
Adenosine triphosphate (ATP) is well-known as a universal source of energy in living cells. Less known is that this molecule has a variety of important signaling functions: it activates a variety of specific metabotropic (P2Y) and ionotropic (P2X) receptors in neuronal and non-neuronal cell membranes. So, a wide variety of signaling functions well fits the ubiquitous presence of ATP in the tissues. Even more ubiquitous are protons. Apart from the unspecific interaction of protons with any protein, many physiological processes are affected by protons acting on specific ionotropic receptors-acid-sensing ion channels (ASICs). Both protons (acidification) and ATP are locally elevated in various pathological states. Using these fundamentally important molecules as agonists, ASICs and P2X receptors signal a variety of major brain pathologies. Here we briefly outline the physiological roles of ASICs and P2X receptors, focusing on the brain pathologies involving these receptors.
Humans
;
Acid Sensing Ion Channels
;
Protons
;
Neurons
;
Brain Diseases
;
Adenosine Triphosphate/physiology*
4.Role of the Voltage-Gated Proton Channel Hv1 in Nervous Systems.
Yu SHEN ; Yuncheng LUO ; Ping LIAO ; Yunxia ZUO ; Ruotian JIANG
Neuroscience Bulletin 2023;39(7):1157-1172
Hv1 is the only voltage-gated proton-selective channel in mammalian cells. It contains a conserved voltage-sensor domain, shared by a large class of voltage-gated ion channels, but lacks a pore domain. Its primary role is to extrude protons from the cytoplasm upon pH reduction and membrane depolarization. The best-known function of Hv1 is the regulation of cytosolic pH and the nicotinamide adenine dinucleotide phosphate oxidase-dependent production of reactive oxygen species. Accumulating evidence indicates that Hv1 is expressed in nervous systems, in addition to immune cells and others. Here, we summarize the molecular properties, distribution, and physiological functions of Hv1 in the peripheral and central nervous systems. We describe the recently discovered functions of Hv1 in various neurological diseases, including brain or spinal cord injury, ischemic stroke, demyelinating diseases, and pain. We also summarize the current advances in the discovery and application of Hv1-targeted small molecules in neurological diseases. Finally, we discuss the current limitations of our understanding of Hv1 and suggest future research directions.
Animals
;
Protons
;
Ion Channels/metabolism*
;
Reactive Oxygen Species/metabolism*
;
Brain/metabolism*
;
NADPH Oxidases
;
Mammals/metabolism*
5.Analysis of Key Points of Radiation Sources in Proton and Carbon Ion Radiotherapy Facilities in Shanghai.
Xiaowa WANG ; Ning DU ; Lan WANG
Chinese Journal of Medical Instrumentation 2020;44(6):476-480
Compared with conventional high energy X-ray radiotherapy, proton/carbon ion has obvious advantages because of its Bragg peak dose distribution. However, proton heavy ion facility has complex structure, high energy and various radiation types due to various nuclear reaction processes, the radiation protection safety brought by the operation of facilities has gradually attracted attention. Taking the proton/carbon ion radiotherapy facility of Shanghai Proton and Heavy Ion Center as an example, the author mainly analyzed the operation principle of proton/carbon ion treatment facility, the basis of radiation protection, analysis of key radiation source points, etc., so as to provide theoretical support and experience for radiation protection.
China
;
Heavy Ion Radiotherapy
;
Heavy Ions
;
Occupational Exposure/prevention & control*
;
Protons
;
Radiation Protection
;
Radiotherapy
6.Progress in Clinical Research of Amide Proton Transfer Imaging.
Xuan JIA ; Can LAI ; Xiaohui MA
Chinese Journal of Medical Instrumentation 2020;44(2):185-188
As a new type of magnetic resonance imaging method, amide proton transfer (APT) imaging can detect the chemical exchange characteristics of free proprotein, peptide amide proton and water proton by water signal changes, reflecting the changes of protein and pH in tissues. In recent years, clinical research on brain tumors, multiple sclerosis, hepatic encephalopathy and cervical cancer have been carried out. It is a radiation-free and non-invasive new magnetic resonance molecular imaging technology. This study briefly reviews the principle of APT technology and its clinical application, and prospects its application prospects in children's abdominal tumors.
Abdomen/pathology*
;
Amides
;
Child
;
Humans
;
Magnetic Resonance Imaging
;
Neoplasms/diagnostic imaging*
;
Protons
7.Delafloxacin, a New Miracle in Antibiotics Armamentarium for Bacterial Infections
Mohammad Saydur RAHMAN ; Young Sang KOH
Journal of Bacteriology and Virology 2019;49(1):39-43
The persistent antibiotics resistant issue has emerged as an influencing factor to deteriorate community health. So, new antibiotics development is urgent for the treatment of bacterial infections. Alternatively, delafloxacin is an eminent new fluoroquinolone, and chemically distinct from older fluoroquinolones. There is lack of proton substituent that indicates the poor acidic property of the drug. It also has a good intracellular penetration capacity that increases the intensity of the bactericidal property in acidic environment. Delafloxacin is a super active drug against the skin and soft tissue infections (SSTIs) and community-acquired respiratory tract infections. Delafloxacin also exhibits better efficacy against pathogens which are resistant to other fluoroquinolones, such as methicillin-resistant Staphylococcus aureus (MRSA). Delafloxacin received approval from the US Food and Drug Administration (FDA) for the treatment of acute bacterial skin and skin structure infections (ABSSI). Phase III clinical trial among patients with community-acquired pneumonia (CAP) is ongoing to evaluate the effectiveness of delafloxacin. From the aforementioned arguments, delafloxacin will be a prominent candidate for the upcoming antibacterial agent. Similarly, delafloxacin can be a crucial drug to fight against ABSSI.
Anti-Bacterial Agents
;
Bacterial Infections
;
Fluoroquinolones
;
Humans
;
Methicillin-Resistant Staphylococcus aureus
;
Pneumonia
;
Protons
;
Respiratory Tract Infections
;
Skin
;
Soft Tissue Infections
;
United States Food and Drug Administration
8.Is the Diagnostic Trial with Proton Pump Inhibitors Reasonable for School Age Children with Gastroesophageal Reflux Symptoms?
Jaeeun YANG ; Jieon LEE ; Hyunju LEE ; Juyeon LEE ; Young Mee YOUN ; Jae Hong CHOI ; Yoon Joo KIM ; Hyun Sik KANG ; Kyoung Hee HAN ; Seung Hyo KIM ; Ki Soo KANG
Pediatric Gastroenterology, Hepatology & Nutrition 2019;22(6):511-517
PURPOSE: On the basis of evidence, we aimed to reevaluate the necessity of the empirical proton pump inhibitor (PPI) trial for children with suspected gastroesophageal reflux disease (GERD). METHODS: We analyzed the frequency of GERD in 85 school-age children with gastroesophageal reflux (GER) symptoms, who received 24-hour esophageal pH monitoring and/or upper endoscopy. According to the reflux index (RI), the children were classified into normal (RI <5%), intermediate (5%≤ RI <10%), or abnormal (RI ≥10%) groups. RESULTS: Fifty six were female and 29 were male. Their mean age was 12.6±0.5 (±standard deviation) years (range: 6.8–18.6). The RI analysis showed that the normal group included 76 patients (89.4%), the intermediate group included 6 patients (7.1%), and the abnormal group included 3 patients (3.5%). The DeMeester score was 5.93±4.65, 14.68±7.86 and 40.37±12.96 for the normal, intermediate and abnormal group, respectively (p=0.001). The longest reflux time was 5.56±6.00 minutes, 9.53±7.84 minutes, and 19.46±8.35 minutes in the normal, intermediate, and abnormal group, respectively (p=0.031). Endoscopic findings showed reflux esophagitis in 7 patients. On the basis of the Los Angeles Classification of Esophagitis, 5 of these patients were included in group A, 1 patient, in group B and 1 patient, in group C. CONCLUSION: The incidence of GERD was very low in school-age children with GER symptoms. Therefore, injudicious diagnostic PPI trials would be postponed until the actual prevalence of GERD is verified in future prospective studies.
Child
;
Classification
;
Endoscopy
;
Esophageal pH Monitoring
;
Esophagitis
;
Esophagitis, Peptic
;
Female
;
Gastroesophageal Reflux
;
Humans
;
Incidence
;
Male
;
Prevalence
;
Prospective Studies
;
Proton Pump Inhibitors
;
Proton Pumps
;
Protons
9.New Perspectives in Pediatric Nonalcoholic Fatty Liver Disease: Epidemiology, Genetics, Diagnosis, and Natural History
Pediatric Gastroenterology, Hepatology & Nutrition 2019;22(6):501-510
Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in children. The global prevalence of pediatric NAFLD from general populations is 7.6%. In obese children, the prevalence is higher in Asia. NAFLD has a strong heritable component based on ethnic difference in the prevalence and clustering within families. Genetic polymorphisms of patatin-like phospholipase domain–containing protein 3 (PNPLA3), transmembrane 6 superfamily member 2, and glucokinase regulatory protein (GCKR) are associated with the risk of NAFLD in children. Variants of PNPLA3 and GCKR are more common in Asians. Alterations of the gut microbiome might contribute to the pathogenesis of NAFLD. High fructose intake increases the risk of NAFLD. Liver fibrosis is a poor prognostic factor for disease progression to cirrhosis. Magnetic resonance spectroscopy and magnetic resonance proton density fat fraction are more accurate for steatosis quantification than ultrasound. Noninvasive imaging methods to assess liver fibrosis, such as transient elastography, shear-wave elastography, and magnetic resonance elastography are useful in predicting advanced fibrosis, but they need further validation. Longitudinal follow-up studies into adulthood are needed to better understand the natural history of pediatric NAFLD.
Asia
;
Asian Continental Ancestry Group
;
Child
;
Diagnosis
;
Disease Progression
;
Elasticity Imaging Techniques
;
Epidemiology
;
Fibrosis
;
Follow-Up Studies
;
Fructose
;
Gastrointestinal Microbiome
;
Genetics
;
Glucokinase
;
Humans
;
Liver Cirrhosis
;
Liver Diseases
;
Magnetic Resonance Spectroscopy
;
Microbiota
;
Natural History
;
Non-alcoholic Fatty Liver Disease
;
Phospholipases
;
Polymorphism, Genetic
;
Prevalence
;
Protons
;
Ultrasonography
10.High-Resolution Magnetic Resonance Imaging Using Compressed Sensing for Intracranial and Extracranial Arteries: Comparison with Conventional Parallel Imaging
Chong Hyun SUH ; Seung Chai JUNG ; Ho Beom LEE ; Se Jin CHO
Korean Journal of Radiology 2019;20(3):487-497
OBJECTIVE: To compare conventional sensitivity encoding (SENSE) to compressed sensing plus SENSE (CS) for high-resolution magnetic resonance imaging (HR-MRI) of intracranial and extracranial arteries. MATERIALS AND METHODS: HR-MRI was performed in 14 healthy volunteers. Three-dimensional T1-weighted imaging (T1WI) and proton density-weighted imaging (PD) were acquired using CS or SENSE under the same total acceleration factors (AF(t))-5.5, 6.8, and 9.7 for T1WI and 3.2, 4.0, and 5.8 for PD-to achieve reduced scanning times in comparison with the original imaging sequence (SENSE T1WI, AF(t) 3.5; SENSE PD, AF(t) 2.0) using the 3-tesla system. Two neuroradiologists measured signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR), and used visual scoring systems to assess image quality. Acceptable imaging was defined as a visual score ≥ 2. Repeated measures analysis of variance and Cochran's Q test were performed. RESULTS: CS yielded better image quality and vessel delineation than SENSE in T1WI with AF(t) of 5.5, 6.8, and 9.7, and in PD with AF(t) of 5.8 (p < 0.05). CS T1WI with AF(t) of 5.5 and CS PD with AF(t) of 3.2 and 4.0 did not differ significantly from original imaging (p > 0.05). SNR and CNR in CS were higher than they were in SENSE, but lower than they were in the original images (p < 0.05). CS yielded higher proportions of acceptable imaging than SENSE (CS T1WI with AF(t) of 6.8 and PD with AF(t) of 5.8; p < 0.0167). CONCLUSION: CS is superior to SENSE, and may be a reliable acceleration method for vessel HR-MRI using AF(t) of 5.5 for T1WI, and 3.2 and 4.0 for PD.
Acceleration
;
Arteries
;
Healthy Volunteers
;
Magnetic Resonance Imaging
;
Methods
;
Protons
;
Signal-To-Noise Ratio

Result Analysis
Print
Save
E-mail