1.High-throughput screening identifies established drugs as SARS-CoV-2 PLpro inhibitors.
Yao ZHAO ; Xiaoyu DU ; Yinkai DUAN ; Xiaoyan PAN ; Yifang SUN ; Tian YOU ; Lin HAN ; Zhenming JIN ; Weijuan SHANG ; Jing YU ; Hangtian GUO ; Qianying LIU ; Yan WU ; Chao PENG ; Jun WANG ; Chenghao ZHU ; Xiuna YANG ; Kailin YANG ; Ying LEI ; Luke W GUDDAT ; Wenqing XU ; Gengfu XIAO ; Lei SUN ; Leike ZHANG ; Zihe RAO ; Haitao YANG
Protein & Cell 2021;12(11):877-888
A new coronavirus (SARS-CoV-2) has been identified as the etiologic agent for the COVID-19 outbreak. Currently, effective treatment options remain very limited for this disease; therefore, there is an urgent need to identify new anti-COVID-19 agents. In this study, we screened over 6,000 compounds that included approved drugs, drug candidates in clinical trials, and pharmacologically active compounds to identify leads that target the SARS-CoV-2 papain-like protease (PLpro). Together with main protease (M
Antiviral Agents/therapeutic use*
;
Binding Sites
;
COVID-19/virology*
;
Coronavirus Papain-Like Proteases/metabolism*
;
Crystallography, X-Ray
;
Drug Evaluation, Preclinical
;
Drug Repositioning
;
High-Throughput Screening Assays/methods*
;
Humans
;
Imidazoles/therapeutic use*
;
Inhibitory Concentration 50
;
Molecular Dynamics Simulation
;
Mutagenesis, Site-Directed
;
Naphthoquinones/therapeutic use*
;
Protease Inhibitors/therapeutic use*
;
Protein Structure, Tertiary
;
Recombinant Proteins/isolation & purification*
;
SARS-CoV-2/isolation & purification*
2.Research progress in structure and function of pectin methylesterase.
Sheng WANG ; Kun MENG ; Huiying LUO ; Bin YAO ; Tao TU
Chinese Journal of Biotechnology 2020;36(6):1021-1030
Pectin methylesterase (PME) is an important pectinase that hydrolyzes methyl esters in pectin to release methanol and reduce the degree of methylation of pectin. At present, it has broad application prospects in food processing, tea beverage, paper making and other production processes. With the in-depth study of PME, the crystal structures with different sources have been reported. Analysis of these resolved crystal structures reveals that PME belongs to the right-hand parallel β-helix structure, and its catalytic residues are two aspartic acids and a glutamine, which play the role of general acid-base, nucleophile and stable intermediate, in the catalytic process. At the same time, the substrate specificity is analyzed to understand the recognition mechanism of the substrate and active sites. This paper systematically reviews these related aspects.
Carboxylic Ester Hydrolases
;
chemistry
;
metabolism
;
Catalytic Domain
;
Crystallography
;
Pectins
;
metabolism
;
Protein Structure, Tertiary
;
Substrate Specificity
3.Structural Characteristics of Seven IL-32 Variants
Dong Hyun SOHN ; Tam T NGUYEN ; Sinae KIM ; Saerok SHIM ; Siyoung LEE ; Youngmin LEE ; Hyunjhung JHUN ; Tania AZAM ; Joohee KIM ; Soohyun KIM
Immune Network 2019;19(2):e8-
IL-32 exists as seven mRNA transcripts that can translate into distinct individual IL-32 variants with specific protein domains. These translated protein domains of IL-32 variants code for specific functions that allow for interaction with different molecules intracellularly or extracellularly. The longest variant is IL-32γ possessing 234 amino acid residues with all 11 protein domains, while the shortest variant is IL-32α possessing 131 amino acid residues with three of the protein domains. The first domain exists in 6 variants except IL-32δ variant, which has a distinct translation initiation codon due to mRNA splicing. The last eleventh domain is common domain for all seven IL-32 variants. Numerous studies in different fields, such as inflammation, autoimmunity, pathogen infection, and cancer biology, have claimed the specific biological activity of individual IL-32 variant despite the absence of sufficient data. There are 4 additional IL-32 variants without proper transcripts. In this review, the structural characteristics of seven IL-32 transcripts are described based on the specific protein domains.
Autoimmunity
;
Biology
;
Codon, Initiator
;
Inflammation
;
Protein Structure, Tertiary
;
RNA, Messenger
4.Single-particle cryo-electron microscopy opens new avenues in structural biology of G protein-coupled receptor.
Chuntao LI ; Huibing ZHANG ; Yan ZHANG
Journal of Zhejiang University. Medical sciences 2019;48(1):39-43
G protein-coupled receptors(GPCRs)represent the largest class of cell surface receptors,mediating wide range of cellular and physiological processes through their transducers,G proteins and the-arrestins participate in almost all pathological processes. Recent technological advances are revolutionizing the utility of cryo-electron microscopy(cryo-EM),leading to a tremendous progress in the structural studies of biological macromolecules and cryo-EM has played a leading role in the structural biology of GPCR signaling complex. New discoveries of high-resolution threedimensional structures of GPCR signaling complexes based on cryo-EM have emerged vigorously,which depict the common structural characteristics of intermolecular interaction between GPCR and G protein complex-the conformational changes of the transmembrane helix 6 of receptors,and also demonstrate the structural basis of G protein subtype selectivity. Single-particle cryo-EM becomes an efficient tool for identifying the molecular mechanism of receptor-ligand interaction,providing important information for understanding GPCR signaling and the structure-based drug design.
Cryoelectron Microscopy
;
Protein Binding
;
Protein Structure, Tertiary
;
Receptors, G-Protein-Coupled
;
chemistry
5.Identification of determinants that mediate binding between Tembusu virus and the cellular receptor heat shock protein A9
Dongmin ZHAO ; Qingtao LIU ; Xinmei HUANG ; Huili WANG ; Kaikai HAN ; Jing YANG ; Keran BI ; Yuzhuo LIU ; Lijiao ZHANG ; Yin LI
Journal of Veterinary Science 2018;19(4):528-535
Heat shock protein A9 (HSPA9), a member of the heat shock protein family, is a putative receptor for Tembusu virus (TMUV). By using Western blot and co-immunoprecipitation assays, E protein domains I and II were identified as the functional domains that facilitate HSPA9 binding. Twenty-five overlapping peptides covering domain I and domain II sequences were synthesized and analyzed by using an HSPA9 binding assay. Two peptides showed the capability of binding to HSPA9. Dot blot assay of truncated peptides indicated that amino acid residues 19 to 22 and 245 to 252 of E protein constitute the minimal motifs required for TMUV binding to HSPA9. Importantly, peptides harboring those two minimal motifs could effectively inhibit TMUV infection. Our results provide insight into TMUV-receptor interaction, thereby creating opportunities for elucidating the mechanism of TMUV entry.
Blotting, Western
;
Heat-Shock Proteins
;
Hot Temperature
;
Humans
;
Immunoprecipitation
;
Peptides
;
Protein Structure, Tertiary
6.Gene cloning and prokaryotic expression of glycosyltransferase from Ligustrum quihoui.
Bi-Xia WANG ; De-Hong XU ; Chao-Yang TAN ; Ling-Min JIANG ; Yue-Fang LUO ; Lei MENG
China Journal of Chinese Materia Medica 2018;43(4):704-711
According to the previous results from transcriptome analysis of Ligustrum quihoui, a glycosyltransferase gene(xynzUGT) was cloned by rapid amplification of cDNA ends(RACE). The full length cDNA of xynzUGT was 1 598 bp, consisting of 66 bp 5'-UTR, 1 440 bp ORF and 92 bp 3'-UTR. The ORF encoded a 480 amino-acid protein(xynzUGT) with a molecular weight of 54 826.67 Da and isoelectric point of 5.82. The structure of enzyme was analyzed by using bioinformatics method, the results showed that the primary structure contained a highly conserved PSPG box of glycosyltransferase, the secondary structure included α helix(38%), sheet(12.1%) and random coil(49.9%), and tertiary structure was constructed by peptide chain folding to form two face-to-face domains(often referred to as a Rossmann domains), between which a substrate binding pocket is sandwiched. The phylogenetic tree analysis indicated that xynzUGT might catalyze glycosylation of phenylpropanoids, such as tyrosol. Further simulation experiment of molecular docking between enzyme and tyrosol showed that Gly138 and Ser285 located in the binding pocket interacted with tyrosol by hydrogen bonding. SDS-PAGE analysis exhibited that the prokaryotic expression system successfully expressed recombinant xynzUGT with molecular weight of 58 370.57 Da, but it exists in the form of non-soluble inclusion bodies. Using the molecular chaperone and enzyme co-expression method, the soluble expression was promoted to some extent. The above works laid the foundation for further studying on enzymatic reaction and clarifying the functional mechanism of enzyme.
Cloning, Molecular
;
DNA, Complementary
;
Glycosyltransferases
;
genetics
;
Ligustrum
;
enzymology
;
genetics
;
Molecular Docking Simulation
;
Phylogeny
;
Plant Proteins
;
genetics
;
Protein Structure, Secondary
;
Protein Structure, Tertiary
7.Identification and analysis of NAC family in ginger(Zingiber officinale) based on RNA-seq data.
Qin-Hong LIAO ; Youg ZOU ; Hong-Lei LI ; Yu-Song JIANG
China Journal of Chinese Materia Medica 2018;43(3):493-501
The NAC family is an important transcription factor which regulate plant growth and development, signal transduction, and stress response.In this study, the protein identification, subfamily classification, the determination of physical and chemical properties, protein structure, and expression pattern of NAC family were performed using bioinformatic methods based on the RNA-seq data of ginger. The results showed that a total of 72 NAC transcription factors were identified in 271.1 Mb total nucleotides, and they could be clustered into 13 subfamilies according to the phylogenetic tree.The physical and chemical properties, structure analysis revealed that the amino acid number and isoelectric point were different among 13 NAC subfamilies; the secondary structure of NACs transcription factors mainly consist of random coil, and the tertiary structure is similar.In addition,the expression patterns of genes under different soil moisture and Ralstonia solanacearum infection showed that 23 NACs were differentially expressed, which were mainly distributed in Ⅷ,Ⅶ, and ⅩⅤ subfamilies related to plant senescence, hormone metabolism and cell wall metabolism.The results provide some valuable information for the research and development of NAC transcription factors in ginger.
Gene Expression Regulation, Plant
;
Ginger
;
genetics
;
Multigene Family
;
Phylogeny
;
Plant Proteins
;
genetics
;
Protein Structure, Tertiary
;
RNA, Plant
;
genetics
;
Sequence Analysis, RNA
;
Transcription Factors
;
genetics
8.Genetic Profiles of Korean Patients With Glucose-6-Phosphate Dehydrogenase Deficiency.
Jaewoong LEE ; Joonhong PARK ; Hayoung CHOI ; Jiyeon KIM ; Ahlm KWON ; Woori JANG ; Hyojin CHAE ; Myungshin KIM ; Yonggoo KIM ; Jae Wook LEE ; Nack Gyun CHUNG ; Bin CHO
Annals of Laboratory Medicine 2017;37(2):108-116
BACKGROUND: We describe the genetic profiles of Korean patients with glucose-6-phosphate dehydrogenase (G6PD) deficiencies and the effects of G6PD mutations on protein stability and enzyme activity on the basis of in silico analysis. METHODS: In parallel with a genetic analysis, the pathogenicity of G6PD mutations detected in Korean patients was predicted in silico. The simulated effects of G6PD mutations were compared to the WHO classes based on G6PD enzyme activity. Four previously reported mutations and three newly diagnosed patients with missense mutations were estimated. RESULTS: One novel mutation (p.Cys385Gly, labeled G6PD Kangnam) and two known mutations [p.Ile220Met (G6PD São Paulo) and p.Glu416Lys (G6PD Tokyo)] were identified in this study. G6PD mutations identified in Koreans were also found in Brazil (G6PD São Paulo), Poland (G6PD Seoul), United States of America (G6PD Riley), Mexico (G6PD Guadalajara), and Japan (G6PD Tokyo). Several mutations occurred at the same nucleotide, but resulted in different amino acid residue changes in different ethnic populations (p.Ile380 variant, G6PD Calvo Mackenna; p.Cys385 variants, Tomah, Madrid, Lynwood; p.Arg387 variant, Beverly Hills; p.Pro396 variant, Bari; and p.Pro396Ala in India). On the basis of the in silico analysis, Class I or II mutations were predicted to be highly deleterious, and the effects of one Class IV mutation were equivocal. CONCLUSIONS: The genetic profiles of Korean individuals with G6PD mutations indicated that the same mutations may have arisen by independent mutational events, and were not derived from shared ancestral mutations. The in silico analysis provided insight into the role of G6PD mutations in enzyme function and stability.
Asian Continental Ancestry Group/*genetics
;
Child
;
Child, Preschool
;
DNA/chemical synthesis/genetics/metabolism
;
Exons
;
Glucosephosphate Dehydrogenase/chemistry/*genetics/metabolism
;
Glucosephosphate Dehydrogenase Deficiency/*genetics/pathology
;
Humans
;
Male
;
Mutation, Missense
;
Polymorphism, Genetic
;
Protein Structure, Tertiary
;
Republic of Korea
;
Sequence Analysis, DNA
9.Systematic Classification of Mixed-Lineage Leukemia Fusion Partners Predicts Additional Cancer Pathways.
Annals of Laboratory Medicine 2016;36(2):85-100
Chromosomal translocations of the human mixed-lineage leukemia (MLL) gene have been analyzed for more than 20 yr at the molecular level. So far, we have collected about 80 direct MLL fusions (MLL-X alleles) and about 120 reciprocal MLL fusions (X-MLL alleles). The reason for the higher amount of reciprocal MLL fusions is that the excess is caused by 3-way translocations with known direct fusion partners. This review is aiming to propose a solution for an obvious problem, namely why so many and completely different MLL fusion alleles are always leading to the same leukemia phenotypes (ALL, AML, or MLL). This review is aiming to explain the molecular consequences of MLL translocations, and secondly, the contribution of the different fusion partners. A new hypothesis will be posed that can be used for future research, aiming to find new avenues for the treatment of this particular leukemia entity.
Alleles
;
Chromosomes, Human, X
;
Epigenesis, Genetic
;
Humans
;
Leukemia/classification/*genetics/pathology
;
Myeloid-Lymphoid Leukemia Protein/chemistry/genetics
;
Protein Structure, Tertiary
;
Translocation, Genetic
10.Draft Genome of Toxocara canis, a Pathogen Responsible for Visceral Larva Migrans.
Jinhwa KONG ; Jungim WON ; Jeehee YOON ; UnJoo LEE ; Jong Il KIM ; Sun HUH
The Korean Journal of Parasitology 2016;54(6):751-758
This study aimed at constructing a draft genome of the adult female worm Toxocara canis using next-generation sequencing (NGS) and de novo assembly, as well as to find new genes after annotation using functional genomics tools. Using an NGS machine, we produced DNA read data of T. canis. The de novo assembly of the read data was performed using SOAPdenovo. RNA read data were assembled using Trinity. Structural annotation, homology search, functional annotation, classification of protein domains, and KEGG pathway analysis were carried out. Besides them, recently developed tools such as MAKER, PASA, Evidence Modeler, and Blast2GO were used. The scaffold DNA was obtained, the N50 was 108,950 bp, and the overall length was 341,776,187 bp. The N50 of the transcriptome was 940 bp, and its length was 53,046,952 bp. The GC content of the entire genome was 39.3%. The total number of genes was 20,178, and the total number of protein sequences was 22,358. Of the 22,358 protein sequences, 4,992 were newly observed in T. canis. Following proteins previously unknown were found: E3 ubiquitin-protein ligase cbl-b and antigen T-cell receptor, zeta chain for T-cell and B-cell regulation; endoprotease bli-4 for cuticle metabolism; mucin 12Ea and polymorphic mucin variant C6/1/40r2.1 for mucin production; tropomodulin-family protein and ryanodine receptor calcium release channels for muscle movement. We were able to find new hypothetical polypeptides sequences unique to T. canis, and the findings of this study are capable of serving as a basis for extending our biological understanding of T. canis.
Adult
;
B-Lymphocytes
;
Base Composition
;
Classification
;
DNA
;
Female
;
Genome*
;
Genomics
;
Humans
;
Larva Migrans, Visceral*
;
Metabolism
;
Mucins
;
Peptides
;
Protein Structure, Tertiary
;
Receptors, Antigen, T-Cell
;
RNA
;
Ryanodine Receptor Calcium Release Channel
;
T-Lymphocytes
;
Toxocara canis*
;
Toxocara*
;
Transcriptome
;
Ubiquitin-Protein Ligases

Result Analysis
Print
Save
E-mail