1.Update on the role and mechanism of erythropoietin receptor in acute kidney injury and repair or fibrosis.
Cheng HAN ; Yu LIU ; Yuan-Yuan WU ; Bin YANG
Acta Physiologica Sinica 2023;75(1):115-129
Acute kidney injury (AKI) is a common critical disease clinically with high morbility and mortality and some survival patients also progress to chronic kidney disease. Renal ischemia-reperfusion (IR) is one of the main causes of AKI, in which, its repair and potential fibrosis, apoptosis, inflammation and phagocytosis play important roles. During the progression of IR-induced AKI, the expression of erythropoietin homodimer receptor (EPOR)2 and EPOR and β common receptor formed heterodimer receptor (EPOR/βcR) is changed dynamically. Moreover, (EPOR)2 and EPOR/βcR may synergistically participate in renoprotection at the stage of AKI and early repair, whereas at the late stage of AKI, the (EPOR)2 induces renal fibrosis and the EPOR/βcR facilitates repair and remodelling. The underlying mechanism, signaling pathways and the different effect turning point of (EPOR)2 and EPOR/βcR have not been well defined. It has been reported that EPO, according to its 3D structure, derived helix B surface peptide (HBSP) and cyclic HBSP (CHBP) only bind to EPOR/βcR. Synthesized HBSP, therefore, provides an effective tool to distinguish the different roles and mechanisms of both receptors, with the (EPOR)2 promoting fibrosis or the EPOR/βcR leading to repair/remodelling at the late stage of AKI. This review discusses the similarities and differences of (EPOR)2 and EPOR/βcR in their impacts on apoptosis, inflammation and phagocytosis in AKI, repair and fibrosis post IR, associated mechanisms, signaling pathways and outcomes.
Humans
;
Receptors, Erythropoietin
;
Acute Kidney Injury
;
Apoptosis
;
Inflammation
;
Phagocytosis
;
Reperfusion Injury
2.Astrocyte-Mediated Myelin Phagocytosis in Ischemia.
Luodan YANG ; Dongyu ZHANG ; Quanguang ZHANG
Neuroscience Bulletin 2023;39(1):167-169
Humans
;
Myelin Sheath
;
Astrocytes
;
Phagocytosis
;
Macrophages
;
Ischemia
3.Improving Blood Monocyte Energy Metabolism Enhances Its Ability to Phagocytose Amyloid-β and Prevents Alzheimer's Disease-Type Pathology and Cognitive Deficits.
Zhi-Hao LIU ; Yu-Di BAI ; Zhong-Yuan YU ; Hui-Yun LI ; Jie LIU ; Cheng-Rong TAN ; Gui-Hua ZENG ; Yun-Feng TU ; Pu-Yang SUN ; Yu-Juan JIA ; Jin-Cai HE ; Yan-Jiang WANG ; Xian-Le BU
Neuroscience Bulletin 2023;39(12):1775-1788
Deficiencies in the clearance of peripheral amyloid β (Aβ) play a crucial role in the progression of Alzheimer's disease (AD). Previous studies have shown that the ability of blood monocytes to phagocytose Aβ is decreased in AD. However, the exact mechanism of Aβ clearance dysfunction in AD monocytes remains unclear. In the present study, we found that blood monocytes in AD mice exhibited decreases in energy metabolism, which was accompanied by cellular senescence, a senescence-associated secretory phenotype, and dysfunctional phagocytosis of Aβ. Improving energy metabolism rejuvenated monocytes and enhanced their ability to phagocytose Aβ in vivo and in vitro. Moreover, enhancing blood monocyte Aβ phagocytosis by improving energy metabolism alleviated brain Aβ deposition and neuroinflammation and eventually improved cognitive function in AD mice. This study reveals a new mechanism of impaired Aβ phagocytosis in monocytes and provides evidence that restoring their energy metabolism may be a novel therapeutic strategy for AD.
Animals
;
Mice
;
Alzheimer Disease
;
Amyloid beta-Peptides
;
Monocytes
;
Cognition
;
Energy Metabolism
;
Phagocytosis
4.Research progress on the relationship between low-density neutrophils and infectious diseases.
Jiayu LI ; Ye ZHANG ; Linxu WANG ; Changxing HUANG
Chinese Journal of Cellular and Molecular Immunology 2023;39(4):371-375
Neutrophils play an important role in infectious diseases by clearing pathogens in the early stages of the disease and damaging the surrounding tissues along with the disease progress. Low-density neutrophils (LDNs) are a crucial and distinct subpopulation of neutrophils. They are a mixture of activated and degranulated normal mature neutrophils and a considerable number of immature neutrophils prematurely released from the bone marrow. Additionally, they may be involved in the occurrence and development of diseases through the changes in phagocytosis, the generation of reactive oxygen species (ROS), the enhancement of the ability to produce neutrophils extracellular traps and immunosuppression. We summarizes the role of LDNs in the pathogenesis and their correlation with the severity of infectious diseases such as COVID-19, severe fever with thrombocytopenia syndrome (SFTS), AIDS, and tuberculosis.
Humans
;
Neutrophils
;
COVID-19/pathology*
;
Phagocytosis
;
Extracellular Traps
;
Communicable Diseases
;
Reactive Oxygen Species
5.Echinococcus granulosus cyst fluid(EgCF) inhibits the migration and phagocytic function of mouse macrophages induced by LPS via inducing cytoskeletal rearrangement.
Feiming HE ; Dan DONG ; Yuting CHEN ; Yuan LIAO ; Ke LIN ; Jin MENG ; Xiangwei WU ; Xueling CHEN
Chinese Journal of Cellular and Molecular Immunology 2023;39(5):385-390
Objective To investigate the effect of Echinococcus granulosus cyst fluid(EgCF) on the cytoskeletal rearrangement and phagocytosis and the migration of macrophages induced by lipopolysaccharide(LPS). Methods Peritoneal macrophages of C57BL/6 mice were isolated and cultured in vitro, and divided into control group and LPS group and LPS combined with EgCF group. After 48 hours of treatment, filamentous actin (F-actin) changes were observed with rhodamine-labelled phalloidin staining and fluorescence microscopy; TranswellTM chamber was used to test cell migration ability and flow cytometry to test cell phagocytosis. After 1 hour of treatment, PI3K and AKT, phosphorylated AKT (p-AKT), Rac1, guanosine triphospho-Rac1 (GTP-Rac1), WASP and Arp2 protein expressions were detected with Western blot analysis. Results Compared with the control group, after LPS stimulation, macrophages were deformed significantly; pseudopodia increased; actin cytoskeleton increased and was more distributed in pseudopodia; the ability of migration and phagocytosis were significantly improved, and the expression of PI3K, p-AKT, GTP-Rac1, WASP and Arp2 proteins significantly increased. EgCF treatment caused cell shrinkage and disappearance of pseudopodia protrusions of LPS-activated cells, and led to the reduced phagocytic and migratory of cells; the protein expression of PI3K, p-AKT, GTP-Rac1, WASP and Arp2 decreased significantly compared with the LPS group. Conclusion LPS induces the migration and enhances phagocytosis of macrophages while EgCF inhibits these effects, which is related to actin cytoskeleton rearrangement.
Mice
;
Animals
;
Lipopolysaccharides/pharmacology*
;
Echinococcus granulosus/metabolism*
;
Proto-Oncogene Proteins c-akt
;
Cyst Fluid/metabolism*
;
Mice, Inbred C57BL
;
Macrophages/metabolism*
;
Phagocytosis
;
Actins/metabolism*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Guanosine Triphosphate/pharmacology*
6.Research progress on the effect of mitochondrial network remodeling on macrophages.
Lianlian ZHU ; Xiangmin KONG ; Wei ZHU
Chinese Journal of Cellular and Molecular Immunology 2023;39(7):656-662
Remodeling of the mitochondrial network is an important process in the maintenance of cellular homeostasis and is closely related to mitochondrial function. Interactions between the biogenesis of new mitochondria and the clearance of damaged mitochondria (mitophagy) is an important manifestation of mitochondrial network remodeling. Mitochondrial fission and fusion act as a bridge between biogenesis and mitophagy. In recent years, the importance of these processes has been described in a variety of tissues and cell types and under a variety of conditions. For example, robust remodeling of the mitochondrial network has been reported during the polarization and effector function of macrophages. Previous studies have also revealed the important role of mitochondrial morphological structure and metabolic changes in regulating the function of macrophages. Therefore, the processes that regulate remodeling of the mitochondrial network also play a crucial role in the immune response of macrophages. In this paper, we focus on the molecular mechanisms of mitochondrial regeneration, fission, fusion, and mitophagy in the process of mitochondrial network remodeling, and integrate these mechanisms to investigate their biological roles in macrophage polarization, inflammasome activation, and efferocytosis.
Mitochondria
;
Mitophagy
;
Homeostasis/physiology*
;
Phagocytosis
;
Macrophages/metabolism*
7.Phagocytosis of microglia in neurodegenerative diseases.
Yue-Ying LIU ; Tian-Shu DU ; Yang LIU ; Zhen ZHANG ; Ai-Niwaer AIZIER ; Xiao-Li GONG ; Xiao-Min WANG ; Ting ZHANG
Acta Physiologica Sinica 2022;74(2):283-293
With the acceleration of the aging society, neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD), have become a rapidly growing global health crisis. Recent studies have indicated that microglia-neuron interactions are critical for maintaining homeostasis of the central nervous system. Genome-Wide Association Studies and brain imaging studies have suggested that microglia are activated in early stage of neurodegenerative diseases. Microglia are specialized phagocytes in the brain. The discovery of a new phagocytic pathway, trogocytosis, suggests that there is a close interaction between microglia and surviving neurons. In this review, we summarize the important roles of microglia in neurodegenerative diseases, and further analyze the functions and molecular mechanisms of microglia phagocytosis and trogocytosis.
Alzheimer Disease
;
Genome-Wide Association Study
;
Humans
;
Microglia/metabolism*
;
Neurodegenerative Diseases
;
Phagocytosis/physiology*
8.Advancements in the study of the classification and immune function of shrimp hemocytes.
Chinese Journal of Biotechnology 2021;37(1):53-66
Hemocytes play an important role in the immune defense system of animals, especially for invertebrates that have no adaptive immune system. In those animals, hemocytes not only participate in the cellular immunity including phagocytosis, encapsulation, and nodules formation, but also the humoral immunity via storage and release of immune factors. Identification of the components of hemocytes is the basis for understanding the immune mechanism and the function of hemocytes. Despite various researches have been done on distinguishing the composition and function of shrimp hemocytes, no standard is used uniformly until now. So, we analyze and summarize the results on shrimp hemocytes research and offer a three subgroups category in this review. We also introduce the morphological characters and immune function of three subgroups in detail. We hope this work will be beneficial for understanding the function and molecular mechanism of hemocytes in invertebrate, bringing ideas for new separation technology development.
Animals
;
Hemocytes
;
Phagocytosis
9.Characteristic comparison of mouse primary macrophages cultured in L929 cell conditioned medium.
Wei WANG ; Yi QIN ; Yaru WANG ; Jiejie ZOU ; Jing CHEN ; Jinwu CHEN ; Yan ZHANG ; Ming GENG ; Zhongdong XU ; Min DAI ; Lilong PAN
Chinese Journal of Biotechnology 2020;36(7):1431-1439
The purpose of this study is to provide a culture for mouse bone marrow-derived macrophages (BMDM) and peritoneal macrophages (PM) and to characterize their molecular and cellular biology. The cell number and purity from the primary culture were assessed by cell counter and flow cytometry, respectively. Morphological features were evaluated by inverted microscope. Phagocytosis by macrophages was detected by the neutral red dye uptake assay. Phenotypic markers were analyzed by real-time fluorescent quantitative PCR. Our results show that the cell number was much higher from culture of BMDM than PM, while there was no significant difference regarding the percentage of F4/80+CD11b+ cells (98.30%±0.53% vs. 94.83%±1.42%; P>0.05). The proliferation rate of BMDM was significantly higher than PM in the presence of L929 cell conditioned medium, by using CCK-8 assay. However, PM appeared to adhere to the flask wall and extend earlier than BMDM. The phagocytosis capability of un-stimulated BMDM was significantly higher than PM, as well as lipopolysaccharide (LPS)-stimulated BMDM, except the BMDM stimulated by low dose LPS (0.1 μg/mL). Furthermore, Tnfα expression was significantly higher in un-stimulated BMDM than PM, while Arg1 and Ym1 mRNA expression were significantly lower than PM. The expression difference was persistent if stimulated by LPS+IFN-γ or IL-4. Our data indicate that bone marrow can get larger amounts of macrophages than peritoneal cavity. However, it should be aware that the molecular and cellular characteristics were different between these two culture systems.
Animals
;
Bone Marrow Cells
;
physiology
;
Cells, Cultured
;
Culture Media, Conditioned
;
Lipopolysaccharides
;
metabolism
;
Macrophages
;
classification
;
physiology
;
Mice
;
Phagocytosis
10.IL-12 Enhances Immune Response by Modulation of Myeloid Derived Suppressor Cells in Tumor Microenvironment.
Ji Na CHOI ; Eun Gene SUN ; Sang Hee CHO
Chonnam Medical Journal 2019;55(1):31-39
Myeloid derived suppressor cells (MDSCs) are a heterogenous population of immature cells that play a critical role in tumor associated immune suppression. In tumor conditions, the population of MDSCs increases. The main feature of these cells is their ability to suppress the T cell response in antigen specific or nonspecific manners depending on the condition of T cell activation. IL-12 can modulate MDSC in preliminary reports, so we investigated how IL-12 can affect MDSC in a tumor microenvironment. After implanting tumor based cells on syngeneic host, 4T-1/BALB/c or EL4/C57BL6 mice, MDSCs (Gr1+CD11b+) were isolated from splenocytes. Isolated MDSCs were treated with GM-CSF with or without IL-12 and analyzed based on their phenotypes and functions. Treatment of MDSC with IL-12 increased co-stimulatory molecules of CD80, CD86, OX-40L, enhancing the DC phenotype (CD11c) and maturation markers such as p-NF-κB and p-GSK3β. In addition to a change of surface markers, T-cell suppressive function of MDSC after IL-12 treatment was significantly improved compared with the control MDSC. In addition, PD-L1+F4/80+ macrophages, which show aninhibitory effect in phagocytosis, were decreased after IL-12 treatment. The changes of cell surface expression of CD80, CD86, MHC class II were also shown in vivo. Our results showed that the IL-12 can modulate MDSC into APC and recover the macrophage function. These results suggested that IL-12 plays a role in improving the tumor immune microenvironment through MDSC modulation.
Animals
;
Granulocyte-Macrophage Colony-Stimulating Factor
;
Interleukin-12*
;
Macrophages
;
Mice
;
Phagocytosis
;
Phenotype
;
T-Lymphocytes
;
Tumor Microenvironment*

Result Analysis
Print
Save
E-mail