1.Recent progress and challenges in the treatment of spinal cord injury.
Ting TIAN ; Sensen ZHANG ; Maojun YANG
Protein & Cell 2023;14(9):635-652
Spinal cord injury (SCI) disrupts the structural and functional connectivity between the higher center and the spinal cord, resulting in severe motor, sensory, and autonomic dysfunction with a variety of complications. The pathophysiology of SCI is complicated and multifaceted, and thus individual treatments acting on a specific aspect or process are inadequate to elicit neuronal regeneration and functional recovery after SCI. Combinatory strategies targeting multiple aspects of SCI pathology have achieved greater beneficial effects than individual therapy alone. Although many problems and challenges remain, the encouraging outcomes that have been achieved in preclinical models offer a promising foothold for the development of novel clinical strategies to treat SCI. In this review, we characterize the mechanisms underlying axon regeneration of adult neurons and summarize recent advances in facilitating functional recovery following SCI at both the acute and chronic stages. In addition, we analyze the current status, remaining problems, and realistic challenges towards clinical translation. Finally, we consider the future of SCI treatment and provide insights into how to narrow the translational gap that currently exists between preclinical studies and clinical practice. Going forward, clinical trials should emphasize multidisciplinary conversation and cooperation to identify optimal combinatorial approaches to maximize therapeutic benefit in humans with SCI.
Humans
;
Axons/pathology*
;
Nerve Regeneration/physiology*
;
Spinal Cord Injuries/therapy*
;
Neurons/pathology*
;
Recovery of Function
2.Advances in the raw material selection and functional design of artificial nerve guidance conduits.
Jingwei LIU ; Jian WANG ; Lin WANG
Chinese Journal of Biotechnology 2023;39(10):4057-4074
Artificial nerve guidance conduits (NGCs) are synthetic nerve grafts that are capable of providing the structural and nutritional support for nerve regeneration. The ideal NGCs have plenty of requirements on biocompatibility, mechanical strength, topological structure, and conductivity. Therefore, it is necessary to continuously improve the design of NGCs and establish a better therapeutic strategy for peripheral nerve injury in order to meet clinical needs. Although current NGCs have made certain process in the treatment of peripheral nerve injury, their nerve regeneration and functional outcomes on repairing long-distance nerve injury remain unsatisfactory. Herein, we review the nerve conduit design from four aspects, namely raw material selection, structural design, therapeutic factor loading and self-powered component integration. Moreover, we summarize the research progress of NGCs in the treatment of peripheral nerve injury, in order to facilitate the iterative updating and clinical transformation of NGCs.
Humans
;
Peripheral Nerve Injuries/therapy*
;
Guided Tissue Regeneration
;
Nerve Regeneration/physiology*
;
Sciatic Nerve
3.Comparison of the Nerve Regeneration Capacity and Characteristics between Sciatic Nerve Crush and Transection Injury Models in Rats.
Bin Bin WANG ; Chao GUO ; Sheng Qiao SUN ; Xing Nan ZHANG ; Zhen LI ; Wei Jie LI ; De Zhi LI ; Michael SCHUMACHER ; Song LIU
Biomedical and Environmental Sciences 2023;36(2):160-173
OBJECTIVE:
To provide useful information for selecting the most appropriate peripheral nerve injury model for different research purposes in nerve injury and repair studies, and to compare nerve regeneration capacity and characteristics between them.
METHODS:
Sixty adult SD rats were randomly divided into two groups and underwent crush injury alone (group A, n = 30) or transection injury followed by surgical repair (group B, n = 30) of the right hind paw. Each group was subjected to the CatWalk test, gastrocnemius muscle evaluation, pain threshold measurement, electrophysiological examination, retrograde neuronal labeling, and quantification of nerve regeneration before and 7, 14, 21, and 28 days after injury.
RESULTS:
Gait analysis showed that the recovery speed in group A was significantly faster than that in group B at 14 days. At 21 days, the compound muscle action potential of the gastrocnemius muscle in group A was significantly higher than that in group B, and the number of labeled motor neurons in group B was lower than that in group A. The number of new myelin sheaths and the g-ratio were higher in group A than in group B. There was a 7-day time difference in the regeneration rate between the two injury groups.
CONCLUSION
The regeneration of nerve fibers was rapid after crush nerve injury, whereas the transection injury was relatively slow, which provides some ideas for the selection of clinical research models.
Animals
;
Rats
;
Nerve Fibers
;
Nerve Regeneration
;
Rats, Sprague-Dawley
;
Sciatic Nerve/injuries*
4.Effect of folic acid coated-crosslinked urethane-doped polyester elastomer nerve conduit on promoting the repair of long distance peripheral nerve injury in rats.
Weibo KANG ; Jiazhi YAN ; Yongjie CHEN ; Chenxi LI ; Dacheng SANG
Chinese Journal of Reparative and Reconstructive Surgery 2023;37(5):622-628
OBJECTIVE:
To investigate the effect of folic acid coated-crosslinked urethane-doped polyester elastomer (fCUPE) nerve conduit in repairing long distance peripheral nerve injury.
METHODS:
Thirty-six 3-month-old male Sprague Dawley rats weighing 180-220 g were randomly assigned to 3 groups, each consisting of 12 rats: CUPE nerve conduit transplantation group (group A), fCUPE nerve conduit transplantation group (group B), and autologous nerve transplantation group (group C), the contralateral healthy limb of group C served as the control group (group D). A 20-mm-long sciatic nerve defect model was established in rats, and corresponding materials were used to repair the nerve defect according to the group. The sciatic function index (SFI) of groups A-C was calculated using the Bain formula at 1, 2, and 3 months after operation. The nerve conduction velocity (NCV) of the affected side in groups A-D was assessed using neuroelectrophysiological techniques. At 3 months after operation, the regenerated nerve tissue was collected from groups A-C for S-100 immunohistochemical staining and Schwann cell count in groups A and B to compare the level of nerve repair and regeneration in each group.
RESULTS:
At 3 months after operation, the nerve conduits in all groups partially degraded. There was no significant adhesion between the nerve and the conduit and the surrounding tissues, the conduit was well connected with the distal and proximal nerves, and the nerve-like tissues in the conduit could be observed when the nerve conduit stents were cut off. SFI in group A was significantly higher than that in group C at each time point after operation and was significantly higher than that in group B at 2 and 3 months after operation ( P<0.05). There was no significant difference in SFI between groups B and C at each time point after operation ( P>0.05). NCV in group A was significantly slower than that in the other 3 groups at each time point after operation ( P<0.05). The NCV of groups B and C were slower than that of group D, but the difference was significant only at 1 month after operation ( P<0.05). There was no significant difference between groups B and C at each time point after operation ( P>0.05). Immunohistochemical staining showed that the nerve tissue of group A had an abnormal cavo-like structure, light tissue staining, and many non-Schwann cells. In group B, a large quantity of normal neural structures was observed, the staining was deeper than that in group A, and the distribution of dedifferentiated Schwann cells was obvious. In group C, the nerve bundles were arranged neatly, and the tissue staining was the deepest. The number of Schwann cells in group B was (727.50±57.60) cells/mm 2, which was significantly more than that in group A [(298.33±153.12) cells/mm 2] ( t=6.139, P<0.001).
CONCLUSION
The fCUPE nerve conduit is effective in repairing long-distance sciatic nerve defects and is comparable to autologous nerve grafts. It has the potential to be used as a substitute material for peripheral nerve defect transplantation.
Rats
;
Animals
;
Male
;
Rats, Sprague-Dawley
;
Polyesters
;
Peripheral Nerve Injuries/surgery*
;
Elastomers
;
Urethane
;
Sciatic Nerve/injuries*
;
Carbamates
;
Nerve Tissue
;
Nerve Regeneration/physiology*
5.Research progress of Notch signaling pathway in spinal cord injury.
Jing LI ; Jia-Xi LI ; Xi-Jing HE ; Hua-You CHEN ; Hang ZHAO
China Journal of Orthopaedics and Traumatology 2022;35(2):194-198
Spinal cord injury is a severe central nervous system disease, which will cause a series of complex pathophysiological changes and activate a variety of signaling pathways including Notch signaling. Studies have evidenced that activation of the Notch signaling pathway is not conducive to nerve repair and symptom improvement after spinal cord injury. Its mechanisms include inhibiting neuronal differentiation and axon regeneration, promoting reactive astrocyte proliferation, promoting M1 macrophage polarization and the release of proinflammatory factors, and inhibiting angiogenesis. Therefore, it has become a promising therapeutic strategy to inhibit Notch signal as a target in the treatment of spinal cord injury. In recent years, some researchers have used drugs, cell transplantation or genetic modification to regulate Notch signaling, which can promote the recovery of nerve function after spinal cord injury, thereby providing new treatment strategies for the treatment of spinal cord injury. This article will summarize the mechanism of Notch signaling pathway in spinal cord injury, and at the same time review the research progress in the treatment of spinal cord injury by modulating Notch signaling pathway in recent years, so as to provide new research ideas for further exploring new strategies for spinal cord injury.
Axons/metabolism*
;
Cell Transplantation
;
Humans
;
Nerve Regeneration
;
Signal Transduction/genetics*
;
Spinal Cord/metabolism*
;
Spinal Cord Injuries/metabolism*
6.Biocompatible chitosan/polyethylene glycol/multi-walled carbon nanotube composite scaffolds for neural tissue engineering.
Shengbo SANG ; Rong CHENG ; Yanyan CAO ; Yayun YAN ; Zhizhong SHEN ; Yajing ZHAO ; Yanqing HAN
Journal of Zhejiang University. Science. B 2022;23(1):58-73
Carbon nanotube (CNT) composite materials are very attractive for use in neural tissue engineering and biosensor coatings. CNT scaffolds are excellent mimics of extracellular matrix due to their hydrophilicity, viscosity, and biocompatibility. CNTs can also impart conductivity to other insulating materials, improve mechanical stability, guide neuronal cell behavior, and trigger axon regeneration. The performance of chitosan (CS)/polyethylene glycol (PEG) composite scaffolds could be optimized by introducing multi-walled CNTs (MWCNTs). CS/PEG/CNT composite scaffolds with CNT content of 1%, 3%, and 5% (1%=0.01 g/mL) were prepared by freeze-drying. Their physical and chemical properties and biocompatibility were evaluated. Scanning electron microscopy (SEM) showed that the composite scaffolds had a highly connected porous structure. Transmission electron microscope (TEM) and Raman spectroscopy proved that the CNTs were well dispersed in the CS/PEG matrix and combined with the CS/PEG nanofiber bundles. MWCNTs enhanced the elastic modulus of the scaffold. The porosity of the scaffolds ranged from 83% to 96%. They reached a stable water swelling state within 24 h, and swelling decreased with increasing MWCNT concentration. The electrical conductivity and cell adhesion rate of the scaffolds increased with increasing MWCNT content. Immunofluorescence showed that rat pheochromocytoma (PC12) cells grown in the scaffolds had characteristics similar to nerve cells. We measured changes in the expression of nerve cell markers by quantitative real-time polymerase chain reaction (qRT-PCR), and found that PC12 cells cultured in the scaffolds expressed growth-associated protein 43 (GAP43), nerve growth factor receptor (NGFR), and class III β-tubulin (TUBB3) proteins. Preliminary research showed that the prepared CS/PEG/CNT scaffold has good biocompatibility and can be further applied to neural tissue engineering research.
Animals
;
Axons
;
Biocompatible Materials/chemistry*
;
Chitosan/chemistry*
;
Nanotubes, Carbon/chemistry*
;
Nerve Regeneration
;
Polyethylene Glycols
;
Porosity
;
Rats
;
Tissue Engineering/methods*
;
Tissue Scaffolds/chemistry*
7.Transcriptome Analysis of Schwann Cells at Various Stages of Myelination Implicates Chromatin Regulator Sin3A in Control of Myelination Identity.
Bin ZHANG ; Wenfeng SU ; Junxia HU ; Jinghui XU ; Parizat ASKAR ; Shuangxi BAO ; Songlin ZHOU ; Gang CHEN ; Yun GU
Neuroscience Bulletin 2022;38(7):720-740
Enhancing remyelination after injury is of utmost importance for optimizing the recovery of nerve function. While the formation of myelin by Schwann cells (SCs) is critical for the function of the peripheral nervous system, the temporal dynamics and regulatory mechanisms that control the progress of the SC lineage through myelination require further elucidation. Here, using in vitro co-culture models, gene expression profiling of laser capture-microdissected SCs at various stages of myelination, and multilevel bioinformatic analysis, we demonstrated that SCs exhibit three distinct transcriptional characteristics during myelination: the immature, promyelinating, and myelinating states. We showed that suppressor interacting 3a (Sin3A) and 16 other transcription factors and chromatin regulators play important roles in the progress of myelination. Sin3A knockdown in the sciatic nerve or specifically in SCs reduced or delayed the myelination of regenerating axons in a rat crushed sciatic nerve model, while overexpression of Sin3A greatly promoted the remyelination of axons. Further, in vitro experiments revealed that Sin3A silencing inhibited SC migration and differentiation at the promyelination stage and promoted SC proliferation at the immature stage. In addition, SC differentiation and maturation may be regulated by the Sin3A/histone deacetylase2 (HDAC2) complex functionally cooperating with Sox10, as demonstrated by rescue assays. Together, these results complement the recent genome and proteome analyses of SCs during peripheral nerve myelin formation. The results also reveal a key role of Sin3A-dependent chromatin organization in promoting myelinogenic programs and SC differentiation to control peripheral myelination and repair. These findings may inform new treatments for enhancing remyelination and nerve regeneration.
Animals
;
Axons
;
Chromatin/metabolism*
;
Gene Expression Profiling
;
Myelin Sheath/metabolism*
;
Nerve Regeneration/physiology*
;
Rats
;
Schwann Cells/metabolism*
;
Sciatic Nerve/injuries*
9.Protective effect of Epothilone D against traumatic optic nerve injury in rats.
Peng Fei WANG ; Sheng Ping LUO ; Chen SHEN ; Zhe Hao YU ; Zu Qing NIE ; Zhi Wei LI ; Jie WEN ; Meng LI ; Xia CAO
Journal of Southern Medical University 2022;42(4):575-583
OBJECTIVE:
To investigate the therapeutic effect of Epothilone D on traumatic optic neuropathy (TON) in rats.
METHODS:
Forty-two SD rats were randomized to receive intraperitoneal injection of 1.0 mg/kg Epothilone D or DMSO (control) every 3 days until day 28, and rat models of TON were established on the second day after the first administration. On days 3, 7, and 28, examination of flash visual evoked potentials (FVEP), immunofluorescence staining and Western blotting were performed to examine the visual pathway features, number of retinal ganglion cells (RGCs), GAP43 expression level in damaged axons, and changes of Tau and pTau-396/404 in the retina and optic nerve.
RESULTS:
In Epothilone D treatment group, RGC loss rate was significantly decreased by 19.12% (P=0.032) on day 3 and by 22.67% (P=0.042) on day 28 as compared with the rats in the control group, but FVEP examination failed to show physiological improvement in the visual pathway on day 28 in terms of the relative latency of N2 wave (P=0.236) and relative amplitude attenuation of P2-N2 wave (P=0.441). The total Tau content in the retina of the treatment group was significantly increased compared with that in the control group on day 3 (P < 0.001), showing a consistent change with ptau-396/404 level. In the optic nerve axons, the total Tau level in the treatment group was significantly lower than that in the control group on day 7 (P=0.002), but the changes of the total Tau and pTau-396/404 level did not show an obvious correlation. Epothilone D induced persistent expression of GAP43 in the damaged axons, detectable even on day 28 of the experiment.
CONCLUSION
Epothilone D treatment can protect against TON in rats by promoting the survival of injured RGCs, enhancing Tau content in the surviving RGCs, reducing Tau accumulation in injured axons, and stimulating sustained regeneration of axons.
Animals
;
Disease Models, Animal
;
Epothilones
;
Evoked Potentials, Visual
;
Nerve Regeneration/physiology*
;
Optic Nerve Injuries/metabolism*
;
Rats
;
Rats, Sprague-Dawley
;
Retinal Ganglion Cells/physiology*
10.Advances about perineuronal nets in the repair of nerve function after spinal cord injury.
Rong HU ; Hai-Peng XU ; Ke-Lin HE ; Yi CHEN ; Lei WU ; Rui-Jie MA
China Journal of Orthopaedics and Traumatology 2021;34(1):91-96
Perineuronal nets (PNNs) is a complex network composed of highly condensed extracellular matrix molecules surrounding neurons. It plays an important role in maintaining the performance of neurons and protecting them from harmful substances. However, after spinal cord injury, PNNs forms a physical barrier that surrounds the neuron and limits neuroplasticity, impedes axonal regeneration and myelin formation, and promotes local neuroinflammatory uptake. This paper mainly describes the composition and function of PNNs of neurons and its regulatory effects on axonal regeneration, myelin formation and neuroinflammation after spinal cord injury.
Axons
;
Extracellular Matrix
;
Humans
;
Nerve Regeneration
;
Neuronal Plasticity
;
Neurons
;
Spinal Cord
;
Spinal Cord Injuries

Result Analysis
Print
Save
E-mail