1.Efficacy and mechanism of Guizhi Tongluo Tablets in alleviating atherosclerosis by inhibiting CD72hi macrophages.
Xing-Ling HE ; Si-Jing LI ; Zi-Ru LI ; Dong-Hua LIU ; Xiao-Jiao ZHANG ; Huan HE ; Xiao-Ming DONG ; Wen-Jie LONG ; Wei-Wei ZHANG ; Hui-Li LIAO ; Lu LU ; Zhong-Qi YANG ; Shi-Hao NI
China Journal of Chinese Materia Medica 2025;50(5):1298-1309
This study investigates the effect and underlying mechanism of Guizhi Tongluo Tablets(GZTL) in treating atherosclerosis(AS) in a mouse model. Apolipoprotein E-knockout(ApoE~(-/-)) mice were randomly assigned to the following groups: model, high-, medium-, and low-dose GZTL, and atorvastatin(ATV), and age-matched C57BL/6J mice were selected as the control group. ApoE~(-/-) mice in other groups except the control group were fed with a high-fat diet for the modeling of AS and administrated with corresponding drugs via gavage for 8 weeks. General conditions, signs of blood stasis, and body mass of mice were monitored. Aortic plaques and their stability were assessed by hematoxylin-eosin, Masson, and oil red O staining. Serum levels of total cholesterol(TC), triglycerides(TG), and low-density lipoprotein cholesterol(LDL-C) were measured by biochemical assays, and those of interleukin-1β(IL-1β), tumor necrosis factor-α(TNF-α), and interleukin-6(IL-6) were determined via enzyme-linked immunosorbent assay. Apoptosis was assessed by terminal deoxynucleotidyl transferase dUTP nick end labeling(TUNEL). Single-cell RNA sequencing(scRNA-seq) was employed to analyze the differential expression of CD72hi macrophages(CD72hi-Mφ) in the aortas of AS patients and mice. The immunofluorescence assay was employed to visualize CD72hi-Mφ expression in mouse aortic plaques, and real-time fluorescence quantitative PCR was utilized to determine the mRNA levels of IL-1β, TNF-α, and IL-6 in the aorta. The results demonstrated that compared with the control group, the model group exhibited significant increases in body mass, aortic plaque area proportion, necrotic core area proportion, and lipid deposition, a notable decrease in collagen fiber content, and an increase in apoptosis. Additionally, the model group showcased elevated serum levels of TC, TG, LDL-C, IL-1β, TNF-α, and IL-6, alongside marked upregulations in the mRNA levels of IL-1β, TNF-α, and IL-6 in the aorta. In comparison with the model group, the GZTL groups and the ATV group showed a reduction in body mass, and the medium-and high-dose GZTL groups and the ATV group demonstrated reductions in aortic plaque area proportion, necrotic core area proportion, and lipid deposition, an increase in collagen fiber content, and a decrease in apoptosis. Furthermore, the treatment goups showcased lowered serum levels of TC, TG, LDL-C, IL-1β, TNF-α, and IL-6. The data of scRNA-seq revealed significantly elevated CD72hi-Mφ signaling in carotid plaques of AS patients compared with that in the normal arterial tissue. Animal experiments confirmed that CD72hi-Mφ expression, along with several pro-inflammatory cytokines, was significantly upregulated in the aortas of AS mice, which were downregulated by GZTL treatment. In conclusion, GZTL may alleviate AS by inhibiting CD72hi-Mφ activity.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Atherosclerosis/immunology*
;
Mice
;
Mice, Inbred C57BL
;
Macrophages/immunology*
;
Male
;
Humans
;
Apolipoproteins E/genetics*
;
Tablets
;
Tumor Necrosis Factor-alpha/genetics*
;
Apoptosis/drug effects*
;
Interleukin-1beta/genetics*
;
Interleukin-6/genetics*
;
Disease Models, Animal
;
Mice, Knockout
2.Metabolomics combined with network pharmacology reveals mechanism of Jiaotai Pills in treating depression.
Guo-Liang DAI ; Ze-Yu CHEN ; Yan-Jun WANG ; Xin-Fang BIAN ; Yu-Jie CHEN ; Bing-Ting SUN ; Xiao-Yong WANG ; Wen-Zheng JU
China Journal of Chinese Materia Medica 2025;50(5):1340-1350
This study aims to explore the mechanism of Jiaotai Pills in treating depression based on metabolomics and network pharmacology. The chemical constituents of Jiaotai Pills were identified by UHPLC-Orbitrap Exploris 480, and the targets of Jiaotai Pills and depression were retrieved from online databases. STRING and Cytoscape 3.7.2 were used to construct the protein-protein interaction network of core targets of Jiaotai Pills in treating depression and the "compound-target-pathway" network. DAVID was used for Gene Ontology(GO) function and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analyses of the core targets. The mouse model of depression was established with chronic unpredictable mild stress(CUMS) and treated with different doses of Jiaotai Pills. The behavioral changes and pathological changes in the hippocampus were observed. UHPLC-Orbitrap Exploris 120 was used for metabolic profiling of the serum, from which the differential metabolites and related metabolic pathways were screened. A "metabolite-reaction-enzyme-gene" network was constructed for the integrated analysis of metabolomics and network pharmacology. A total of 34 chemical components of Jiaotai Pills were identified, and 143 core targets of Jiaotai Pills in treating depression were predicted, which were mainly involved in the arginine and proline, sphingolipid, and neurotrophin metabolism signaling pathways. The results of animal experiments showed that Jiaotai Pills alleviated the depression behaviors and pathological changes in the hippocampus of the mouse model of CUMS-induced depression. In addition, Jiaotai Pills reversed the levels of 32 metabolites involved in various pathways such as arginine and proline metabolism, sphingolipid metabolism, and porphyrin metabolism in the serum of model mice. The integrated analysis showed that arginine and proline metabolism, cysteine and methionine metabolism, and porphyrin metabolism might be the key pathways in the treatment of depression with Jiaotai Pills. In conclusion, metabolomics combined with network pharmacology clarifies the antidepressant mechanism of Jiaotai Pills, which may provide a basis for the clinical application of Jiaotai Pills in treating depression.
Animals
;
Drugs, Chinese Herbal/chemistry*
;
Depression/genetics*
;
Mice
;
Network Pharmacology
;
Metabolomics
;
Male
;
Disease Models, Animal
;
Humans
;
Protein Interaction Maps/drug effects*
;
Antidepressive Agents
3.Metabolomics and pharmacokinetics of Corni Fructus in ameliorating myocardial ischemic injury.
Xiang-Feng LIU ; Yu WU ; Chao-Yan YANG ; Hua-Wei LIAO ; Yan-Fen CHEN ; Xin HE ; Ying-Fang WANG ; Jin-Ru LIANG
China Journal of Chinese Materia Medica 2025;50(5):1363-1376
This study aims to investigate the ameliorating effect of Corni Fructus(CF) on the myocardial ischemic injury and the pharmacokinetic properties of characteristic components of CF. The mouse model of isoproterenol-induced myocardial ischemia was established and administrated with the aqueous extract of CF. The general efficacy of CF in ameliorating the myocardial ischemic injury was evaluated based on the cardiac histopathology and the levels of myocardial injury markers: creatine kinase isoenzyme(CK-MB) and cardiac troponin I(cTn-I). The metabolomics analysis was carried out for the heart and serum samples of mice to screen the biomarkers of CF in ameliorating the myocardial ischemic injury and then the predicted biomarkers were submitted to metabolic pathway enrichment. The pharmacokinetic analysis was performed for morroniside, loganin, and cornuside Ⅰ in mouse heart and serum samples to obtain the pharmacokinetic parameters of these components. The pharmacokinetic parameters were then integrated on the basis of self-defined weighting coefficients to simulate an integrated pharmacokinetic profile of CF iridoid glycosides in the heart and serum of the mouse model of myocardial ischemia. The results indicated that CF reduced the pathological damage to cardiac cells and tissue(hematoxylin-eosin staining) and lowered the levels of CK-MB and cTn-I in the serum of the mouse model of myocardial ischemia(P<0.01). Metabolomics analysis screed out 31 endogenous metabolites in the heart and 35 in the serum as biomarkers of CF in ameliorating the myocardial ischemic injury. These biomarkers were altered by modeling and restored by CF. Six metabolic pathways in the heart and 5 in the serum were enriched based on these metabolic markers. The main integrated pharmacokinetic parameters of CF iridoid glycosides were T_(max)=1 h, t_(1/2)=(1.52±0.05) h in the heart and T_(max)=1 h, t_(1/2)=(1.56±0.50) h in the serum. Both concentration-time curves showed a double-peak phenomenon. In conclusion, CF demonstrated the cardioprotective effect by regulating metabolic pathways such as taurine and hypotaurine metabolism, and pantothenic acid and coenzyme A biosynthesis. The integrated pharmacokinetics reflect the general pharmacokinetic properties of characteristic components in CF.
Animals
;
Cornus/chemistry*
;
Mice
;
Metabolomics
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Myocardial Ischemia/metabolism*
;
Humans
;
Troponin I/metabolism*
;
Myocardium/pathology*
;
Disease Models, Animal
;
Biomarkers/metabolism*
;
Creatine Kinase, MB Form/metabolism*
4.Pharmacodynamics study and establishment of a PK-PD model for Epimedii Folium-Chuanxiong Rhizoma in treating osteoarthritis in rats.
En-Hui WU ; Jian-Hua ZHANG ; Wen-Jun CHEN ; Ya-Hong WANG ; Hua YIN
China Journal of Chinese Materia Medica 2025;50(5):1377-1384
This study aims to reveal the correlation between the pharmacokinetics(PK) and pharmacodynamics(PD) of multiple components in Epimedii Folium-Chuanxiong Rhizoma and clarify the pharmacodynamic material basis and mechanism of this herb pair in treating osteoarthritis. The Hulth method was used to establish the rat model of osteoarthritis and plasma was collected at various time points after drug administration. The plasma concentrations of multiple components were measured. Enzyme-linked immunosorbent assay(ELISA) was used to measure the plasma concentrations of matrix metalloproteinase(MMP)-3, MMP-13, interleukin-1β(IL-1β), nitric oxide(NO), and tumor necrosis factor-α(TNF-α) as pharmacodynamic indicators. Self-defined weighting coefficients were used to calculate the PK and PD data, and a Sigmoid E_(max) fitting model was used to evaluate the synergistic effect of the compatibility of Epimedii Folium-Chuanxiong Rhizoma. The PK-PD models for Epimedii Folium, Chuanxiong Rhizoma, and Epimedii Folium-Chuanxiong Rhizoma were E=(1.926×C~(2.652))/(0.136 6~(2.652)+C~(2.652)), E=(1.618×C~(345.2))/(0.118 4~(345.2)+C~(345.2)), and E=(2.305×C~(2.786))/(0.240 3~(2.786)+C~(2.786)), respectively. The E_(max) of Epimedii Folium-Chuanxiong Rhizoma was larger than those of the two herbal medicines alone. The EC_(50) of the herb pair was lower than the sum of Epimedii Folium and Chuanxiong Rhizoma alone. The concentrations of MMP-3, MMP-13, IL-1β, NO, and TNF-α were correlated with mass concentrations of multiple components in Epimedii Folium and Chuanxiong Rhizoma, and the compatibility was better than single use. Epimedii Folium, Chuanxiong Rhizoma, and Epimedii Folium-Chuanxiong Rhizoma may play a role in the treatment of osteoarthritis by inhibiting MMP-3, MMP-13, IL-1β, NO, and TNF-α.
Animals
;
Rats
;
Drugs, Chinese Herbal/pharmacology*
;
Male
;
Rats, Sprague-Dawley
;
Osteoarthritis/metabolism*
;
Epimedium/chemistry*
;
Interleukin-1beta/blood*
;
Tumor Necrosis Factor-alpha/blood*
;
Disease Models, Animal
;
Nitric Oxide/blood*
;
Humans
;
Rhizome/chemistry*
5.Effect of Fushen Decoction on 5-HT system and GABA expression in mouse model of PCPA-induced insomnia.
Jun-Hang HU ; Fei XU ; Tong-Sheng WANG ; Hua-Sheng PENG ; Li LI
China Journal of Chinese Materia Medica 2025;50(6):1581-1591
This study aims to observe the mind-tranquilizing effect of Fushen Decoction on mice and investigate its effects on the 5-hydroxytryptamine(5-HT) system and γ-aminobutyric acid(GABA) in the brain of the mouse model of 4-chloro-DL-phenylalanine(PCPA)-induced insomnia. ICR mice were administrated with coffee(1 g·kg~(-1)) for 3 days, and the effects of Fushen Decoction(10, 20, and 40 g·kg~(-1)) on the autonomic activities of normal mice and coffee-treated mice were observed. Furthermore, the effects of Fushen Decoction on the autonomic activity and sleep induced by a suprathreshold dose of pentobarbital sodium in the mouse model of PCPA(350 mg·kg~(-1) for 3 consecutive days)-induced insomnia were observed. The levels of tryptophan hydroxylase(TPH), 5-hydroxytryptophan(5-HTP), and 5-HT in the serum, as well as those of 5-HTP and 5-HT in the brain stem, hippocampus, and cortex, were measured by enzyme-linked immunosorbent assay(ELISA). The fluorescence intensity of 5-HT in the raphe nucleus, hippocampus, and cortex was measured by the immunofluorescence method. The protein levels of tryptophan hydroxylase-2(TPH2) and 5-HT_(1A) receptor(5-HT_(1A)R) in the brain stem, hippocampus, and cortex were measured by Western blot. The levels of GABA in the hypothalamus, hippocampus, and cortex were measured by ELISA and immunohistochemistry methods. The results showed that Fushen Decoction(20, 40 g·kg~(-1)) reduced the number of autonomous activities in normal mice, coffee-treated mice, and the mouse model of PCPA-induced insomnia, and prolonged the duration of sleep induced by a suprathreshold dose of pentobarbital sodium in the mouse model. Fushen Decoction(20, 40 g·kg~(-1)) elevated the levels of TPH, 5-HTP, and 5-HT in the serum, and TPH2, 5-HTP, 5-HT, and 5-HT_(1A)R in the brain stem, hippocampus, and cortex, and up-regulated GABA expression in the hypothalamus, cortex, and hippocampus of the mouse model of PCPA-induced insomnia. In conclusion, Fushen Decoction(20, 40 g·kg~(-1)) exerted a mind-tranquilizing effect on mice by up-regulating the expression of TPH2, enhancing the 5-HT system, and elevating the GABA level in the brain.
Animals
;
Serotonin/genetics*
;
Sleep Initiation and Maintenance Disorders/genetics*
;
Mice
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Mice, Inbred ICR
;
gamma-Aminobutyric Acid/genetics*
;
Disease Models, Animal
;
Fenclonine/adverse effects*
;
Tryptophan Hydroxylase/genetics*
;
Brain/metabolism*
;
Sleep/drug effects*
;
Humans
;
5-Hydroxytryptophan/metabolism*
6.Mahuang Lianqiao Chixiaodou Decoction and its active components inhibit alternative pathway complement activation in rat model of IgA nephropathy.
Ting SONG ; Guang-Yu SHENG ; Wei RUAN ; Ya-Heng ZHANG ; Xue-Jun YANG
China Journal of Chinese Materia Medica 2025;50(6):1626-1636
This study aims to investigate the mechanism of Mahuang Lianqiao Chixiaodou Decoction(MHLQ) and its main active components in treating immunoglobin A nephropathy(IgAN). The rat model of IgAN was established by a combination of measures including gavage of bovine serum albumin, subcutaneous injection of carbon tetrachloride, and tail vein injection of lipopolysaccharide. The modeled rats were randomized into model, low-, medium-, and high-dose(1.773, 3.545, and 7.090 g·kg~(-1), respectively) MHLQ, phillyrin(PHI, 0.020 g·kg~(-1)), pseudoephedrine(PSE, 0.020 g·kg~(-1)), and losartan potassium(LP, 9.003 mg·kg~(-1)) groups, and Wistar rats were used as the control. Rats were administrated with corresponding drugs by gavage, and those in the control and model groups received an equal volume of normal saline. All the groups were treated for 4 consecutive weeks. Urine, serum, liver, and kidney samples were collected from rats in each group at the end of drug administration. The 24 h urine protein and renal function were examined, and staining was performed to observe the pathological changes in the renal tissue. The immunofluorescence assay was employed to detect the expression of IgA and complement C3/C3b/C3c in the renal tissue. Electron microscopy was employed to observe the ultrastructure of the renal tissue. Enzyme-linked immunosorbent assay was performed to determine the expression of complement C3 and sublytic C5b-9 in the serum and renal tissue. Western blot was performed to determine the expression levels of hepatic and renal complement C3/C3b/C3c, C5/C5a, C5b-9, and complement factor B(CFB). Immunohistochemistry(IHC) was employed to measure the expression of complement C3 in the renal tissue. The results showed that compared with the control group, the model group had elevated levels of blood urea nitrogen and serum creatinine, proliferation of glomerular mesangial cells and extracellular matrix, and glomerular deposition of IgA immune complexes or electron-dense material. In addition, the model group showcased increased serum C3 levels and up-regulated expression of CFB, C3/C3b/C3c, C5/C5a, and C5b-9 in the renal tissue and C3/C3b/C3c and C5b-9 in the hepatic tissue. After treatment with MHLQ and its active components, all of the above indexes were reversed. In conclusion, MHLQ and its active components can improve the renal function and reduce the deposition of immune complexes and pathological damage in the renal tissue of the rat model of IgAN by inhibiting the alternative pathway complement activation.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Glomerulonephritis, IGA/genetics*
;
Rats
;
Male
;
Disease Models, Animal
;
Rats, Wistar
;
Complement Activation/drug effects*
;
Kidney/immunology*
;
Humans
7.Medicinal properties and mechanisms of p-cymene with mild and warm nature based on deficiency-cold and deficiency-heat syndrome models.
Xiao-Fang WU ; Yi LI ; Xing-Yu ZHAO ; Lin-Ze LI ; Qi ZHANG ; Yin-Ming ZHAO ; Ying-Li ZHU ; Chun WANG ; Jian-Jun ZHANG ; Lin-Yuan WANG
China Journal of Chinese Materia Medica 2025;50(8):2032-2040
This paper aims to study the effect of p-cymene on mice with deficiency-cold syndrome induced by hydrocortisone and deficiency-heat syndrome induced by dexamethasone and explore the medicinal properties and mechanism of p-cymene with mild and warm nature based on the dominant characteristics of the two-way applicable conditions of mild drugs. A total of 80 KM mice were randomly divided into blank group, deficiency-cold syndrome model group, deficiency-cold syndrome + ginseng group, and deficiency-cold syndrome + low-dose and high-dose p-cymene groups, as well as blank group, deficiency-heat syndrome model group, deficiency-heat syndrome + American ginseng group, and deficiency-heat syndrome + low-dose and high-dose p-cymene groups. Hydrocortisone and dexamethasone solution were intragastrically administered for 14 consecutive days to prepare deficiency-cold syndrome and deficiency-heat syndrome models. Except for the blank group and the model group intragastrically administered with normal saline, the other groups were intragastrically administrated with drugs for 14 days. The levels of cyclic adenosine monophosphate(cAMP), cyclic guanosine monophosphate(cGMP), triiodothyronine(T3), thyroxine(T4), total cholesterol(TC), triglyceride(TG), immunoglobin G(IgG), and immunoglobin M(IgM) in serum, as well as the activity of Na~+-K~+-ATPase in liver tissue were detected. The expression of transient receptor potential melastatin 8(TRPM8), transient receptor potential vanilloid 1(TRPV1), and uncoupling protein 1(UCP1) in brown adipose tissue of deficiency-cold syndrome model after intervention with p-cymene was studied. The results showed that p-cymene could effectively improve the levels of cAMP, cAMP/cGMP, TC, IgM, and IgG in serum and the activity of Na~+-K~+-ATPase in liver tissue of mice with deficiency-cold syndrome and reduce the content of cGMP. The effects on T3, T4, and TG were not statistically significant. At the same time, p-cymene could reduce the levels of cAMP, cAMP/cGMP, and T4 in serum and the activity of Na~+-K~+-ATPase in liver tissue of mice with deficiency-cold syndrome and increase the levels of cGMP, IgM, and IgG, and it had no effect on T3, TC, and TG. In addition, p-cymene could up-regulate the expression of TRPV1 and UCP1 in brown fat of mice with deficiency-cold syndrome and down-regulate the expression of TRPM8. In summary, p-cymene could significantly regulate the syndrome indexes of mice with deficiency-cold syndrome, and some indexes of mice with deficiency-heat syndrome could be improved, but the effects on lipid metabolism and energy metabolism indexes were not obvious, indicating that the regulation effect of p-cymene on deficiency-cold syndrome model was more prominent and that the medicinal properties of p-cymene were mild and warm. The regulation of TRPV1/TRPM8/UCP1 channel expression may be the molecular biological mechanism of p-cymene with mild and warm nature affecting the energy metabolism of the body.
Animals
;
Cymenes
;
Mice
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Disease Models, Animal
;
Humans
;
Cyclic AMP/metabolism*
;
Monoterpenes/administration & dosage*
;
Liver/metabolism*
;
Cyclic GMP/metabolism*
;
TRPV Cation Channels/genetics*
;
Uncoupling Protein 1/genetics*
8.Mechanism of Quanduzhong Capsules in treating knee osteoarthritis from perspective of spatial heterogeneity.
Zhao-Chen MA ; Zi-Qing XIAO ; Chu ZHANG ; Yu-Dong LIU ; Ming-Zhu XU ; Xiao-Feng LI ; Zhi-Ping WU ; Wei-Jie LI ; Yi-Xin YANG ; Na LIN ; Yan-Qiong ZHANG
China Journal of Chinese Materia Medica 2025;50(8):2209-2216
This study aims to systematically characterize the targeted effects of Quanduzhong Capsules on cartilage lesions in knee osteoarthritis by integrating spatial transcriptomics data mining and animal experiments validation, thereby elucidating the related molecular mechanisms. A knee osteoarthritis model was established using Sprague-Dawley(SD) rats, via a modified Hulth method. Hematoxylin and eosin(HE) staining was employed to detect knee osteoarthritis-associated pathological changes in knee cartilage. Candidate targets of Quanduzhong Capsules were collected from the HIT 2.0 database, followed by bioinformatics analysis of spatial transcriptomics datasets(GSE254844) from cartilage tissues in clinical knee osteoarthritis patients to identify spatially specific disease genes. Furthermore, a "formula candidate targets-spatially specific genes in cartilage lesions" interaction network was constructed to explore the effects and major mechanisms of Quanduzhong Capsules in distinct cartilage regions. Experimental validation was conducted through immunohistochemistry using animal-derived biospecimens. The results indicated that Quanduzhong Capsules effectively inhibited the degenerative changes in the cartilage of affected joints in rats, which was associated with the regulation of Quanduzhong Capsules on the thioredoxin-interacting protein(TXNIP)-NOD-like receptor family pyrin domain containing 3(NLRP3)-bone morphogenetic protein receptor type 2(BMPR2)-fibronectin 1(FN1)-matrix metallopeptidase 2(MMP2) signal axis in the articular cartilage surface and superficial zones, subsequently inhibiting cartilage matrix degradation leading to oxidative stress and inflammatory diffusion. In summary, this study clarifies the spatially specific targeted effects and protective mechanisms of Quanduzhong Capsules within pathological cartilage regions in knee osteoarthritis, providing theoretical and experimental support for the clinical application of this drug in the targeted therapy on the inflamed cartilage.
Animals
;
Osteoarthritis, Knee/metabolism*
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats, Sprague-Dawley
;
Rats
;
Male
;
Humans
;
Capsules
;
Female
;
Disease Models, Animal
9.Multifaceted mechanisms of Danggui Shaoyao San in ameliorating Alzheimer's disease based on transcriptomics and metabolomics.
Min-Hao YAN ; Han CAI ; Hai-Xia DING ; Shi-Jie SU ; Xu-Nuo LI ; Zi-Qiao XU ; Wei-Cheng FENG ; Qi-Qing WU ; Jia-Xin CHEN ; Hong WANG ; Qi WANG
China Journal of Chinese Materia Medica 2025;50(8):2229-2236
This study explored the potential therapeutic targets and mechanisms of Danggui Shaoyao San(DSS) in the prevention and treatment of Alzheimer's disease(AD) through transcriptomics and metabolomics, combined with animal experiments. Fifty male C57BL/6J mice, aged seven weeks, were randomly divided into the following five groups: control, model, positive drug, low-dose DSS, and high-dose DSS groups. After the intervention, the Morris water maze was used to assess learning and memory abilities of mice, and Nissl staining and hematoxylin-eosin(HE) staining were performed to observe pathological changes in the hippocampal tissue. Transcriptomics and metabolomics were employed to sequence brain tissue and identify differential metabolites, analyzing key genes and metabolites related to disease progression. Reverse transcription-quantitative polymerase chain reaction(RT-qPCR) was employed to validate the expression of key genes. The Morris water maze results indicated that DSS significantly improved learning and cognitive function in scopolamine(SCOP)-induced model mice, with the high-dose DSS group showing the best results. Pathological staining showed that DSS effectively reduced hippocampal neuronal damage, increased Nissl body numbers, and reduced nuclear pyknosis and neuronal loss. Transcriptomics identified seven key genes, including neurexin 1(Nrxn1) and sodium voltage-gated channel α subunit 1(Scn1a), and metabolomics revealed 113 differential metabolites, all of which were closely associated with synaptic function, oxidative stress, and metabolic regulation. RT-qPCR experiments confirmed that the expression of these seven key genes was consistent with the transcriptomics results. This study suggests that DSS significantly improves learning and memory in SCOP model mice and alleviates hippocampal neuronal pathological damage. The mechanisms likely involve the modulation of synaptic function, reduction of oxidative stress, and metabolic balance, with these seven key genes serving as important targets for DSS in the treatment of AD.
Animals
;
Alzheimer Disease/genetics*
;
Male
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice
;
Mice, Inbred C57BL
;
Metabolomics
;
Transcriptome/drug effects*
;
Maze Learning/drug effects*
;
Hippocampus/metabolism*
;
Humans
;
Disease Models, Animal
;
Memory/drug effects*
10.Mechanism of Jiming Powder in improving mitophagy for treatment of myocardial infarction based on PINK1-Parkin pathway.
Xin-Yi FAN ; Xiao-Qi WEI ; Wang-Jing CHAI ; Kuo GAO ; Fang-He LI ; Xue YU ; Shu-Zhen GUO
China Journal of Chinese Materia Medica 2025;50(12):3346-3355
In the present study, a mouse model of coronary artery ligation was employed to evaluate the effects of Jiming Powder on mitophagy in the mouse model of myocardial infarction and elucidate its underlying mechanisms. A mouse model of myocardial infarction post heart failure was constructed by ligating the left anterior descending branch of the coronary artery. The therapeutic efficacy of Jiming Powder was assessed from multiple perspectives, including ultrasonographic imaging, hematoxylin-eosin(HE) staining, Masson staining, and serum cardiac enzyme profiling. Dihydroethidium(DHE) staining was employed to evaluate the oxidative stress levels in the hearts of mice from each group. Mitophagy levels were assessed by scanning electron microscopy and immunofluorescence co-localization. Western blot was employed to determine the levels of key proteins involved in mitophagy, including Bcl-2-interacting protein beclin 1(BECN1), sequestosome 1(SQSTM1), microtubule-associated protein 1 light chain 3 beta(LC3B), PTEN-induced putative kinase 1(PINK1), phospho-Parkinson disease protein(p-Parkin), and Parkinson disease protein(Parkin). The results demonstrated that compared with the model group, high and low doses of Jiming Powder significantly reduced the left ventricular internal diameter in systole(LVIDs) and left ventricular internal diameter in diastole(LVIDd) and markedly improved the left ventricular ejection fraction(LVEF) and left ventricular fractional shortening(LVFS), effectively improving the cardiac function in post-myocardial infarction mice. Jiming Powder effectively reduced the levels of myocardial injury markers such as creatine kinase(CK), creatine kinase isoenzyme(CK-MB), and lactate dehydrogenase(LDH), thereby protecting ischemic myocardium. HE staining revealed that Jiming Powder attenuated inflammatory cell infiltration after myocardial infarction. Masson staining indicated that Jiming Powder effectively inhibited ventricular remodeling. Western blot results showed that Jiming Powder activated the PINK1-Parkin pathway, up-regulated the protein level of BECN1, down-regulated the protein level of SQSTM1, and increased the LC3Ⅱ/LC3Ⅰ ratio to promote mitophagy. In conclusion, Jiming Powder exerts therapeutic effects on myocardial infarction by inhibiting ventricular remodeling. The findings pave the way for subsequent pharmacological studies on the active components of Jiming Powder.
Animals
;
Myocardial Infarction/physiopathology*
;
Mitophagy/drug effects*
;
Mice
;
Drugs, Chinese Herbal/administration & dosage*
;
Protein Kinases/genetics*
;
Male
;
Ubiquitin-Protein Ligases/genetics*
;
Humans
;
Disease Models, Animal
;
Mice, Inbred C57BL
;
Signal Transduction/drug effects*

Result Analysis
Print
Save
E-mail