1.The glutamate-serine-glycine index as a biomarker to monitor the effects of bariatric surgery on non-alcoholic fatty liver disease
Nichole Yue Ting Tan ; Elizabeth Shumbayawonda ; Lionel Tim-Ee Cheng ; Albert Su Chong Low ; Chin Hong Lim ; Alvin Kim Hock Eng ; Weng Hoong Chan ; Phong Ching Lee ; Mei Fang Tay ; Jason Pik Eu Chang ; Yong Mong Bee ; George Boon Bee Goh ; Jianhong Ching ; Kee Voon Chua ; Sharon Hong Yu Han ; Jean-Paul Kovalik ; Hong Chang Tan
Journal of the ASEAN Federation of Endocrine Societies 2024;39(2):54-60
Objective:
Bariatric surgery effectively treats non-alcoholic fatty liver disease (NAFLD). The glutamate-serine-glycine (GSG) index has emerged as a non-invasive diagnostic marker for NAFLD, but its ability to monitor treatment response remains unclear. This study investigates the GSG index's ability to monitor NAFLD's response to bariatric surgery.
Methodology:
Ten NAFLD participants were studied at baseline and 6 months post-bariatric surgery. Blood samples were collected for serum biomarkers and metabolomic profiling. Hepatic steatosis [proton density fat fraction (PDFF)] and fibroinflammation (cT1) were quantified with multiparametric magnetic resonance imaging (mpMRI), and hepatic stiffness with magnetic resonance elastography (MRE). Amino acids and acylcarnitines were measured with mass spectrometry. Statistical analyses included paired Student’s t-test, Wilcoxon-signed rank test, and Pearson’s correlation.
Results:
Eight participants provided complete data. At baseline, all had hepatic steatosis (BMI 39.3 ± 5.6 kg/m2, PDFF ≥ 5%). Post-surgery reductions in PDFF (from 12.4 ± 6.7% to 6.2 ± 2.8%, p = 0.013) and cT1 (from 823.3 ± 85.4ms to 757.5 ± 41.6ms, p = 0.039) were significant, along with the GSG index (from 0.272 ± 0.03 to 0.157 ± 0.05, p = 0.001).
Conclusion
The GSG index can potentially be developed as a marker for monitoring the response of patients with NAFLD to bariatric surgery.
Non-alcoholic Fatty Liver Disease
;
Amino Acids
;
Metabolomics
2.Metabolomics study of Berberidis Radix in intervening ulcerative colitis based on UPLC-Q-TOF-MS.
Xue-Li HU ; Chang-Yuan ZHOU ; Rui XU ; Hong LI ; Bao YANG ; Jian LONG ; Xing TU ; Juan NIE ; Ke-Yun LIU ; Ze-Hua HU
China Journal of Chinese Materia Medica 2023;48(9):2490-2499
The effect of Tujia medicine Berberidis Radix on endogenous metabolites in the serum and feces of mice with ulcerative colitis(UC) induced by dextran sulfate sodium(DSS) was analyzed by metabolomics technology to explore the metabolic pathway and underlying mechanism of Berberidis Radix in the intervention of UC. The UC model was induced in mice by DSS. Body weight, disease activity index(DAI), and colon length were recorded. The levels of tumor necrosis factor-α(TNF-α) and interleukin-10(IL-10) in colon tissues were determined by ELISA. The levels of endogenous metabolites in the serum and feces were detected by ultra-high-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS). Principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA) were employed to characterize and screen differential metabolites. The potential metabolic pathways were analyzed by MetaboAnalyst 5.0. The results showed that Berberidis Radix could significantly improve the symptoms of UC mice and increase the level of the anti-inflammatory factor IL-10. A total of 56 and 43 differential metabolites were identified in the serum and feces, respectively, belonging to lipids, amino acids, fatty acids, etc. After the intervention by Berberidis Radix, the metabolic disorder gradually recovered. The involved metabolic pathways included biosynthesis of phenylalanine, tyrosine, and tryptophan, linoleic acid metabolism, phenylalanine metabolism, and glycerophospholipid metabolism. Berberidis Radix can alleviate the symptoms of mice with DSS-induced UC, and the mechanism may be closely related to the re-gulation of lipid metabolism, amino acid metabolism, and energy metabolism.
Mice
;
Animals
;
Colitis, Ulcerative/drug therapy*
;
Interleukin-10
;
Metabolomics/methods*
;
Chromatography, High Pressure Liquid
3.Mechanism of tryptanthrin in treatment of ulcerative colitis in mice based on serum metabolomics.
Jie ZHU ; Bao-Long HOU ; Wen CHENG ; Ting WANG ; Zheng WANG ; Yan-Ni LIANG
China Journal of Chinese Materia Medica 2023;48(8):2193-2202
This study aims to explore the effect of tryptanthrin on potential metabolic biomarkers in the serum of mice with ulcerative colitis(UC) induced by dextran sulfate sodium(DSS) based on liquid chromatography-mass spectrometry(LC-MS) and predict the related metabolic pathways. C57BL/6 mice were randomly assigned into a tryptanthrin group, a sulfasalazine group, a control group, and a model group. The mouse model of UC was established by free drinking of 3% DSS solution for 11 days, and corresponding drugs were adminsitrated at the same time. The signs of mice were observed and the disease activity index(DAI) score was recorded from the first day. Colon tissue samples were collected after the experiment and observed by hematoxylin-eosin(HE) staining. The levels of interleukin-4(IL-4), interleukin-10(IL-10), tumor necrosis factor-α(TNF-α), interleukin-6(IL-6), and interleukin-8(IL-8) in the serum were measured by enzyme linked immunosorbent assay(ELISA). The serum samples were collected from 6 mice in each group for widely targeted metabolomics. The metabolic pathways were enriched by MetaboAnalyst 5.0. The results showed that compared with the model group, tryptanthrin treatment decreased the DAI score(P<0.05), alleviated the injury of the colon tissue and the infiltration of inflammatory cells, lowered the levels of proinflammatory cytokines, and elevated the levels of anti-inflammatory cytokines in the serum. The metabolomic analysis revealed 28 differential metabolites which were involved in 3 metabolic pathways including purine metabolism, arachidonic acid metabolism, and tryptophan metabolism. Tryptanthrin may restore the metabolism of the mice with UC induced by DSS to the normal level by regulating the purine metabolism, arachidonic acid metabolism, and tryptophan metabolism. This study employed metabolomics to analyze the mechanism of tryptanthrin in the treatment of UC, providing an experimental basis for the utilization and development of tryptanthrin.
Mice
;
Animals
;
Colitis, Ulcerative/drug therapy*
;
Tryptophan
;
Arachidonic Acid/metabolism*
;
Mice, Inbred C57BL
;
Colon
;
Cytokines/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Interleukin-6/metabolism*
;
Metabolomics
;
Purines/therapeutic use*
;
Dextran Sulfate/metabolism*
;
Disease Models, Animal
;
Colitis/chemically induced*
4.Difference in liver injury induced by dictamnine between males and females: based on untargeted metabolomics.
Can TU ; Zhao-Juan GUO ; Bing-Qian JIANG ; Qian-Jun KANG ; Ting WANG
China Journal of Chinese Materia Medica 2023;48(12):3317-3326
In recent years, reports of adverse reactions related to traditional Chinese medicine(TCM) have been on the rise, especially some traditionally considered "non-toxic" TCM(such as Dictamni Cortex). This has aroused the concern of scholars. This study aims to explore the metabolomic mechanism underlying the difference in liver injury induced by dictamnine between males and females through the experiment on 4-week-old mice. The results showed that the serum biochemical indexes of liver function and organ coefficients were significantly increased by dictamnine(P<0.05), and hepatic alveolar steatosis was mainly observed in female mice. However, no histopathological changes were observed in the male mice. Furthermore, a total of 48 differential metabolites(such as tryptophan, corticosterone, and indole) related to the difference in liver injury between males and females were screened out by untargeted metabolomics and multivariate statistical analysis. According to the receiver operating characteristic(ROC) curve, 14 metabolites were highly correlated with the difference. Finally, pathway enrichment analysis indicated that disorders of metabolic pathways, such as tryptophan metabolism, steroid hormone biosynthesis, and ferroptosis(linoleic acid metabolism and arachidonic acid metabolism), may be the potential mechanism of the difference. Liver injury induced by dictamnine is significantly different between males and females, which may be caused by the disorders of tryptophan metabolism, steroid hormone biosynthesis, and ferroptosis pathways.
Female
;
Male
;
Animals
;
Mice
;
Tryptophan
;
Metabolomics
;
Fatty Liver
;
Steroids
;
Hormones
5.Potential components and mechanism of Liangxue Tuezi Mixture in treating Henoch-Schönlein purpura based on network pharmacology and metabolomics.
Wei-Xia LI ; Shuang XU ; Yu-Long CHEN ; Xiao-Yan WANG ; Hui ZHANG ; Ming-Liang ZHANG ; Wen-Juan NI ; Xian-Qing REN ; Jin-Fa TANG
China Journal of Chinese Materia Medica 2023;48(12):3327-3344
Ultra-performance liquid chromatography-quadrupole time of fight/mass spectrometry(UPLC-Q-TOF-MS) and UNIFI were employed to rapidly determine the content of the components in Liangxue Tuizi Mixture. The targets of the active components and Henoch-Schönlein purpura(HSP) were obtained from SwissTargetPrediction, Online Mendelian Inheritance in Man(OMIM), and GeneCards. A "component-target-disease" network and a protein-protein interaction(PPI) network were constructed. Gene Ontology(GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis were performed for the targets by Omishare. The interactions between the potential active components and the core targets were verified by molecular docking. Furthermore, rats were randomly assigned into a normal group, a model group, and low-, medium-, and high-dose Liangxue Tuizi Mixture groups. Non-targeted metabolomics was employed to screen the differential metabolites in the serum, analyze possible metabolic pathways, and construct the "component-target-differential metabolite" network. A total of 45 components of Liangxue Tuizi Mixture were identified, and 145 potential targets for the treatment of HSP were predicted. The main signaling pathways enriched included resistance to epidermal growth factor receptor tyrosine kinase inhibitors, phosphatidylinositol 3-kinase/protein kinase B(PI3K-AKT), and T cell receptor. The results of molecular docking showed that the active components in Liangxue Tuizi Mixture had strong binding ability with the key target proteins. A total of 13 differential metabolites in the serum were screened out, which shared 27 common targets with active components. The progression of HSP was related to metabolic abnormalities of glycerophospholipid and sphingolipid. The results indicate that the components in Liangxue Tuizi Mixture mainly treats HSP by regulating inflammation and immunity, providing a scientific basis for rational drug use in clinical practice.
Animals
;
Rats
;
IgA Vasculitis/drug therapy*
;
Network Pharmacology
;
Molecular Docking Simulation
;
Phosphatidylinositol 3-Kinases
;
Metabolomics
6.Mechanism of Gardeniae Fructus in ameliorating rheumatoid arthritis based on metabolomics and intestinal microbiota.
Ying TONG ; Yang-Ding XU ; Jiang HE ; Pu-Yang GONG ; Yi HONG ; Yu-Jie GUO
China Journal of Chinese Materia Medica 2023;48(13):3602-3611
Rheumatoid arthritis(RA), a chronic autoimmune disease, is featured by persistent joint inflammation. The development of RA is associated with the disturbance of endogenous metabolites and intestinal microbiota. Gardeniae Fructus(GF), one of the commonly used medicinal food in China, is usually prescribed for the prevention and treatment of jaundice, inflammation, ache, fever, and skin ulcers. GF exerts an effect on ameliorating RA, the mechanism of which remains to be studied. In this study, ultra-perfor-mance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS)-based serum non-target metabolomics and 16S rDNA high-throughput sequencing were employed to elucidate the mechanism of GF in ameliorating RA induced by complete Freund's adjuvant in rats. The results showed that GF alleviated the pathological conditions in adjuvant arthritis(AA) rats. The low-and high-dose GF lo-wered the serum levels of interleukin(IL)-6, tumor necrosis factor-α(TNF-α), IL-1β, and prostaglandin E2 in the rats(P<0.05, P<0.01). Pathways involved in metabolomics were mainly α-linolenic acid metabolism and glycerophospholipid metabolism. The results of 16S rDNA sequencing showed that the Streptococcus, Facklamia, Klebsiella, Enterococcus, and Kosakonia were the critical gut microorganisms for GF to treat AA in rats. Spearman correlation analysis showed that the three differential metabolites PE-NMe[18:1(9Z)/20:0], PC[20:1(11Z)/18:3(6Z,9Z,12Z)], and PC[20:0/18:4(6Z,9Z,12Z,15Z)] were correlated with the differential bacteria. In conclusion, GF may ameliorate RA by regulating the composition of intestinal microbiota, α-linolenic acid metabolism, and glycerophospholipid metabolism. The findings provide new ideas and data for elucidating the mechanism of GF in relieving RA.
Rats
;
Animals
;
Chromatography, Liquid
;
Gardenia
;
Tandem Mass Spectrometry
;
Gastrointestinal Microbiome
;
alpha-Linolenic Acid
;
Metabolomics/methods*
;
Arthritis, Rheumatoid/drug therapy*
;
Inflammation
;
Glycerophospholipids
7.Bletilla striata polysaccharide improves toxic and side effects induced by 5-FU: an untargeted metabolomics study.
Jiang-Tao ZHANG ; Peng LIU ; Wen-Long WANG ; Xin-Xu XIE ; Tao-Hong HE ; Ya-Ru CUI ; Jun YU
China Journal of Chinese Materia Medica 2023;48(13):3612-3622
This study aimed to analyze the effect of Bletilla striata polysaccharide(BSP) on endogenous metabolites in serum of tumor-bearing mice treated with 5-fluorouracil(5-FU) by untargeted metabolomics techniques and explore the mechanism of BSP in alleviating the toxic and side effects induced by 5-FU. Male BALB/C mice were randomly divided into a normal group, a model group, a 5-FU group, and a 5-FU + BSP group, with eight mice in each group. Mouse colon cancer cells(CT26) were transplanted into the mice except for those in the normal group to construct the tumor-bearing mouse model by subcutaneous injection, and 5-FU chemotherapy and BSP treatment were carried out from the second day of modeling. The changes in body weight, diarrhea, and white blood cell count in the peripheral blood were recorded. The mice were sacrificed and sampled when the tumor weight of mice in the model group reached approximately 1 g. TUNEL staining was used to detect the cell apoptosis in the small intestine of each group. The proportions of hematopoietic stem cells and myeloid progenitor cells in bone marrow were measured by flow cytometry. Five serum samples were selected randomly from each group for untargeted metabolomics analysis. The results showed that BSP was not effective in inhibiting colon cancer in mice, but diarrhea, leukopenia, and weight loss caused by 5-FU chemotherapy were significantly improved after BSP intervention. In addition, apoptotic cells decreased in the small intestinal tissues and the percentages of hematopoietic stem cells and myeloid progenitor cells in bone marrow were significantly higher after BSP treatment. Metabolomics results showed that the toxic and side effects of 5-FU resulted in significant decrease in 29 metabolites and significant increase in 22 metabolites in mouse serum. Among them, 19 disordered metabolites showed a return to normal levels in the 5-FU+BSP group. The results of pathway enrichment indicated that metabolic pathways mainly involved pyrimidine metabolism, arachidonic acid metabolism, and steroid hormone biosynthesis. Therefore, BSP may ameliorate the toxic and side effects of 5-FU in the intestinal tract and bone marrow presumably by regulating nucleotide synthesis, inflammatory damage, and hormone production.
Animals
;
Male
;
Mice
;
Colonic Neoplasms/drug therapy*
;
Diarrhea
;
Fluorouracil/adverse effects*
;
Hormones
;
Metabolomics
;
Mice, Inbred BALB C
;
Polysaccharides/pharmacology*
8.Discovery of biomarkers related to abnormal lipid metabolism in liver and serum and intervention mechanism of ginsenoside Rb_1 in hyperlipidemia rats based on non-targeted metabolomics.
China Journal of Chinese Materia Medica 2023;48(14):3922-3933
Through the non-targeted metabolomics study of endogenous substances in the liver and serum of hyperlipidemia rats, the biomarkers related to abnormal lipid metabolism in hyperlipidemia rats were found, and the target of ginsenoside Rb_1 in improving hyperlipidemia was explored and its mechanism was elucidated. The content of serum biochemical indexes of rats in each group was detected by the automatic biochemical analyzer. The metabolite profiles of liver tissues and serum of rats were analyzed by HPLC-MS. Principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA) were used to compare and analyze the metabolic data in the normal group, the hyperlipidemia group, and the ginsenoside Rb_1 group, and screen potential biomar-kers. The related metabolic pathways were further constructed by KEGG database analysis. The results showed that hyperlipemia induced dyslipidemia in rats, which was alleviated by ginsenoside Rb_1. The non-targeted metabolomics results showed that there were 297 differential metabolites in the liver tissues of hyperlipidemia rats, 294 differential metabolites in the serum samples, and 560 diffe-rential metabolites in the hyperlipidemia rats treated by ginsenoside Rb_1. Perillic acid and N-ornithyl-L-taurine were common metabolites in the liver and serum samples, which could be used as potential biomarkers for ginsenoside Rb_1 in the improvement of hyperlipidemia. As revealed by pathway enrichment in the liver and serum, ginsenoside Rb_1 could participate in the metabolic pathway of choline in both the liver and serum. In addition, ginsenoside Rb_1 also participated in the ABC transporter, alanine, aspartic acid, and glutamate metabolism, protein digestion and absorption, β-alanine metabolism, taurine and hypotaurine metabolism, caffeine metabolism, valine, leucine, and isoleucine biosynthesis, arachidonic acid metabolism, and methionine and cysteine metabolism to improve dyslipidemia in rats.
Rats
;
Animals
;
Hyperlipidemias/drug therapy*
;
Metabolome
;
Ginsenosides/metabolism*
;
Lipid Metabolism
;
Metabolomics/methods*
;
Liver/metabolism*
;
Biomarkers
;
Taurine
9.Multi-omics approaches for revealing the etiology of cancer: from genomics, exposomics, metabolomics to system epidemiology.
Chinese Journal of Epidemiology 2023;44(4):521-528
Identifying risk factors of the disease are one of the main tasks of epidemiology. With the advancement of omics technologies (e.g., genome, transcriptome, proteome, metabolome, and exposome), cancer etiology research has entered the stage of systems epidemiology. Genomic research identifies cancer susceptibility loci and uncovers their biological mechanisms. Exposomic research investigates the impact of environmental factors on biological processes and disease risks. The metabolome is downstream of biological regulatory networks, reflecting the effects of the gene, environment, and their interactions, which can help elucidate the biological mechanisms of genetic and environmental risk factors and identify new biomarkers. Here, we reviewed the applications of genomic, exposomic, and metabolomic studies in the etiologic research on cancer. We summarized the importance of multi-omics approaches and systems epidemiology in cancer etiology research and outlined future perspectives.
Humans
;
Multiomics
;
Genomics
;
Metabolomics
;
Neoplasms/genetics*
;
Biomarkers
10.Metabolomic Profiling of Mice Exposed to α-amanitin Using Ultra-performance Liquid Chromatography Quadrupole Time-of-flight Tandem Mass Spectrometry.
Lei LI ; Chong ZHENG ; Jian Fang YE ; Kai ZHU ; Yi Bing ZHOU ; Jia LIU ; Ming GAO ; Yu Tian WU ; Yong Ting LIU ; Li Ya LIU ; Ye LIN ; Hai Chang LI ; Quan ZHANG ; Hua GUO
Biomedical and Environmental Sciences 2023;36(3):289-294


Result Analysis
Print
Save
E-mail