1.Ferroptosis and drug-induced liver injury.
Chinese Journal of Hepatology 2023;31(4):345-348
		                        		
		                        			
		                        			Ferroptosis is a type of regulated cell death driven by iron-dependent lipid peroxidation that has received extensive attention in recent years. A growing body of evidence suggests that ferroptosis contributes to the progression of drug-induced liver injury. Therefore, the role and mechanism of ferroptosis in the process of drug-induced liver injury deserve further extensive and in-depth exploration, which will aid in the discovery of novel biomarkers as well as the identification of potential approches of targeting ferroptosis to intervene in drug-induced liver injury.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Biomarkers/metabolism*
		                        			;
		                        		
		                        			Chemical and Drug Induced Liver Injury
		                        			;
		                        		
		                        			Ferroptosis
		                        			;
		                        		
		                        			Iron/metabolism*
		                        			;
		                        		
		                        			Lipid Peroxidation/physiology*
		                        			
		                        		
		                        	
2.New perspectives on ferroptosis and its role in hepatocellular carcinoma.
Tianhao CONG ; Yingen LUO ; Yan FU ; Yu LIU ; Yujie LI ; Xiao LI
Chinese Medical Journal 2022;135(18):2157-2166
		                        		
		                        			
		                        			For a long time, the morbidity and mortality rates of hepatocellular carcinoma (HCC) have remained high. Since the concept of ferroptosis was introduced in 2012, researchers' perspectives have shifted toward finding novel ferroptosis-related treatment strategies, especially for tumors that are resistant to apoptosis. In recent years, there have been an increasing number of studies on ferroptosis, and these studies have found that ferroptosis has great potential and promise for cancer treatment. Ferroptosis is a kind of regulated cell death (RCD); unlike apoptosis, ferroptosis is an iron-dependent type of RCD driven by lipid peroxidation. The whole process of ferroptosis mainly revolves around three pathways (system xc-/ glutathione peroxidase 4 [GPX4]), lipid peroxidation, and iron metabolism), which are also regulated by various metabolic factors. This review will attempt to analyze the relationship between the system xc-/GPX4 pathway, lipid peroxidation, iron metabolism, and ferroptosis from three aspects (triggering, execution, and regulation), and the regulatory factors for ferroptosis will be summarized. In this review, we will also illustrate the relationship between ferroptosis and tumors as well as its application in tumors from the perspective of HCC. Finally, we will summarize the current limitations and needs and provide perspectives related to the focus of development in the future.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Ferroptosis
		                        			;
		                        		
		                        			Carcinoma, Hepatocellular/metabolism*
		                        			;
		                        		
		                        			Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism*
		                        			;
		                        		
		                        			Cell Death
		                        			;
		                        		
		                        			Liver Neoplasms/metabolism*
		                        			;
		                        		
		                        			Lipid Peroxidation
		                        			;
		                        		
		                        			Iron/metabolism*
		                        			
		                        		
		                        	
3.Pharmacological action of quercetin against testicular dysfunction: A mini review.
Damilare E ROTIMI ; Tomilola D OLAOLU ; Oluyomi S ADEYEMI
Journal of Integrative Medicine 2022;20(5):396-401
		                        		
		                        			
		                        			The testis is an immune-privileged organ susceptible to oxidative stress and inflammation, two major factors implicated in male infertility. A reduction in the concentration and activities of testicular function biomarkers has been shown to correlate with impaired hypothalamic-pituitary-testicular axis and oxidative stress. However, the use of natural products to ameliorate these oxidative stress-induced changes may be essential to improving male reproductive function. Quercetin possesses several pharmacological activities that may help to combat cellular reproduction-related assaults, such as altered sperm function and reproductive hormone dysfunction, and dysregulated testicular apoptosis, oxidative stress, and inflammation. Studies have shown that quercetin ameliorates testicular toxicity, largely by inhibiting the generation of reactive oxygen species, with the aid of the two antioxidant pharmacophores present in its ring structure. The radical-scavenging property of quercetin may alter signal transduction of oxidative stress-induced apoptosis, prevent inflammation, and increase sperm quality in relation to the hormonal concentration. In this review, the therapeutic potential of quercetin in mediating male reproductive health is discussed.
		                        		
		                        		
		                        		
		                        			Antioxidants/pharmacology*
		                        			;
		                        		
		                        			Apoptosis
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Inflammation/drug therapy*
		                        			;
		                        		
		                        			Lipid Peroxidation
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Oxidative Stress
		                        			;
		                        		
		                        			Quercetin/pharmacology*
		                        			;
		                        		
		                        			Semen
		                        			;
		                        		
		                        			Testis
		                        			
		                        		
		                        	
4.Cytotoxicity and underlying mechanism of evodiamine in HepG2 cells.
Ya Dong GAO ; An ZHU ; Lu Di LI ; Tao ZHANG ; Shuo WANG ; Dan Ping SHAN ; Ying Zi LI ; Qi WANG
Journal of Peking University(Health Sciences) 2021;53(6):1107-1114
		                        		
		                        			OBJECTIVE:
		                        			To investigate evodiamine (EVO)-induced hepatotoxicity and the underlying mechanism.
		                        		
		                        			METHODS:
		                        			HepG2 cells were treated with EVO (0.04-25 μmol/L) for different time intervals, and the cell survival rate was examined by cell counting kit-8 (CCK-8) method. After HepG2 cells were treated with EVO (0.2, 1 and 5 μmol/L) for 48 h, the alanine transaminase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), alkaline phosphatase (ALP) activities and total bilirubin (TBIL) content of supernatant were detected. A multifunctional microplate reader was used to detect the intracellular superoxide dismutase (SOD) activity and malondialdehyde (MDA) content in HepG2 cells to evaluate the level of cell lipid peroxidation damage. The interactions between EVO and apoptosis, autophagy or ferroptosis-associated proteins were simulated by molecular docking. The HepG2 cells were stained by mitochondrial membrane potential (MMP) fluorescent probe (JC-10) and annexin V-fluorescein isothiocyanate/propidium iodide (Annexin V-FITC/PI), and MMP and apoptosis in HepG2 cells were detected by flow cytometry. The protein expression levels of caspase-9, caspase-3, bile salt export pump (BSEP) and multidrug resistance-associated protein 2 (MRP2) were detected by Western blot.
		                        		
		                        			RESULTS:
		                        			The cell survival rate was significantly reduced after the HepG2 cells were exposed to EVO (0.04-25 μmol/L) in a time- and dose-dependent manner. The half maximal inhibitory concentration (IC50) of the HepG2 cells treated with EVO for 24, 48 and 72 h were 85.3, 6.6 and 4.7 μmol/L, respectively. After exposure to EVO (0.2, 1 and 5 μmol/L) for 48 h, the ALT, AST, LDH, ALP activities and TBIL content in the HepG2 cell culture supernatant, and the MDA content in the cells were increased, and SOD enzyme activity was decreased. Molecular docking results showed that EVO interacted with apoptosis-associated proteins (caspase-9 and caspase-3) better. JC-10 and Annexin V-FITC/PI staining assays demonstrated that EVO could decrease MMP and promote apoptosis in the HepG2 cells. Western blot results indicated that the protein expressions of cleaved caspase-9 and cleaved caspase-3 were upregulated in the HepG2 cell treated with EVO for 48 h. In contrast, the protein expressions of pro-caspase-3, BSEP and MRP2 were downregulated.
		                        		
		                        			CONCLUSION
		                        			These results suggested that 0.2, 1 and 5 μmol/L EVO had the potential hepatotoxicity, and the possible mechanism involved lipid peroxidation damage, cell apoptosis, and cholestasis.
		                        		
		                        		
		                        		
		                        			ATP Binding Cassette Transporter, Subfamily B, Member 11
		                        			;
		                        		
		                        			Apoptosis
		                        			;
		                        		
		                        			Caspase 3
		                        			;
		                        		
		                        			Caspase 9
		                        			;
		                        		
		                        			Cholestasis
		                        			;
		                        		
		                        			Hep G2 Cells/drug effects*
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Lipid Peroxidation
		                        			;
		                        		
		                        			Liver/drug effects*
		                        			;
		                        		
		                        			Molecular Docking Simulation
		                        			;
		                        		
		                        			Multidrug Resistance-Associated Protein 2
		                        			;
		                        		
		                        			Quinazolines/toxicity*
		                        			
		                        		
		                        	
5.The metabolic networks of ferroptosis and links to lung diseases.
Hai-Peng CHENG ; Dan-Dan FENG ; Shao-Jie YUE ; Zi-Qiang LUO
Acta Physiologica Sinica 2020;72(5):566-574
		                        		
		                        			
		                        			Ferroptosis is a newly discovered non-apoptotic form of regulated cell death driven by iron-dependent lipid peroxidation. The present studies have shown that many metabolic processes and homeostasis are affected by ferroptosis. It is related to many lung diseases, including acute lung injury, chronic obstructive pulmonary disease and pulmonary fibrosis, etc. Currently, the research on ferroptosis is still in its infancy. Previous studies have confirmed that ferroptosis is regulated by a variety of genes, and the mechanism is complex, mainly involving iron homeostasis and lipid peroxidation metabolism. This review summarizes some regulation networks of metabolic processes associated with ferroptosis and discusses the roles of ferroptosis in the pathophysiological progression of many lung diseases. We expected to provide new ideas and references for the treatment of these diseases.
		                        		
		                        		
		                        		
		                        			Ferroptosis
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Iron
		                        			;
		                        		
		                        			Lipid Peroxidation
		                        			;
		                        		
		                        			Metabolic Networks and Pathways
		                        			;
		                        		
		                        			Pulmonary Disease, Chronic Obstructive
		                        			
		                        		
		                        	
6.Mechanisms of tanshinone Ⅱ_A in reducing 4-HNE-induced hepatocyte damage by activating PPARα.
Qian-Yu QIAN ; Na YING ; Zhen YANG ; Li ZHOU ; Qing-Sheng LIU ; Zi-Yi HU ; Chun-Lei FAN ; Song-Tao LI ; Xiao-Bing DOU
China Journal of Chinese Materia Medica 2019;44(9):1862-1868
		                        		
		                        			
		                        			Tanshinone Ⅱ_A( Tan Ⅱ_A),the liposoluble constituents of Salvia miltiorrhiza,can not only ameliorate the lipidic metabolism and decrease the concentration of lipid peroxidation,but also resist oxidation damage,scavenge free radicals and control inflammation,with a protective effect on prognosis after liver function impairment. Therefore,the studies on the exact mechanism of Tan Ⅱ_A in protecting the liver can provide important theoretical and experimental basis for the prevention and treatment effect of Tan Ⅱ_A for liver injury. In the present study,the protective effects and mechanism of Tan Ⅱ_A on 4-hydroxynonenal( 4-HNE)-induced liver injury were investigated in vitro. Normal liver tissues NCTC 1469 cells were used to induce hepatocytes oxidative damages by 4-HNE treatment. The protective effect of Tan Ⅱ_A on hepatocytes oxidative damages was detected by release amount of lactate dehydrogenase( LDH) analysis and hoechst staining. The protein expression changes of peroxisome proliferator-activated receptor α( PPARα) and peroxisome proliferator response element( PPRE) were analyzed by Western blot analysis in NCTC 1469 cells before and after Tan Ⅱ_A treatment. The gene expression changes of fatty aldehyde dehydrogenase( FALDH) were analyzed by Real-time polymerase chain reaction( PCR) analysis. The results showed that 4-HNE increased the release amount of LDH,lowered the cell viability of NCTC 1469 cells,and Tan Ⅱ_A reversed 4-HNE-induced hepatocyte damage. Western blot analysis and RT-PCR analysis results showed that 4-HNE decreased the expression of PPARα and FALDH and increased the expression of 4-HNE. However,the expression of PPARα and FALDH were increased significantly and the expression of 4-HNE was decreased obviously after Tan Ⅱ_A treatment. This study confirmed that the curative effect of Tan Ⅱ_A was obvious on hepatocytes damage,and the mechanism may be associated with activating PPARα and FALDH expression as well as scavenging 4-HNE.
		                        		
		                        		
		                        		
		                        			Aldehyde Oxidoreductases
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Aldehydes
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Cell Line
		                        			;
		                        		
		                        			Diterpenes, Abietane
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Hepatocytes
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Lipid Peroxidation
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Oxidative Stress
		                        			;
		                        		
		                        			PPAR alpha
		                        			;
		                        		
		                        			metabolism
		                        			
		                        		
		                        	
7.Mechanism of Calculus Bovis Sativus in inhibiting hepatocyte lipid deposition based on serum pharmacology.
Wen-Xi HE ; Cheng-Liang ZHANG ; Dong XIANG ; Jin-Yu YANG ; Yan-Jiao XU ; Xiu-Hua REN ; Dong LIU
China Journal of Chinese Materia Medica 2019;44(17):3780-3785
		                        		
		                        			
		                        			The aim of this paper was to investigate the molecular mechanism of Calculus Bovis Sativus( CBS) in alleviating lipid accumulation in vitro by serum pharmacology. The CBS-containing serum of mice was obtained by serum pharmacology method to evaluate its effect on the proliferation of LO2 hepatocytes. The lipid reducing effects of CBS-containing serum through Nrf2 was evaluated by fructose-induced LO2 hepatocyte steatosis model,nuclear factor erythroid 2 related factor 2( Nrf2) agonist oltipraz combined intervention,cell oil red O staining and intracellular triglyceride( TG) content. The effects of CBS-containing serum on lipid peroxidation and hepatocytes apoptosis were evaluated by reactive oxygen species( ROS) and apoptosis assay,respectively. Real-time quantitative polymerase chain reaction( PCR) was used to detect the relative expression of lipid synthesis-related genes and apoptosis-related genes.RESULTS:: showed that CBS drug-containing serum had no significant effect on LO2 hepatocyte proliferation. As compared with the model group,CBS-containing serum could effectively reduce the formation of lipid droplets in fructose-induced LO2 hepatocytes,significantly reduce intracellular TG and ROS levels,and significantly reduce hepatocyte apoptosis rate( P < 0. 05). As compared with the model group,carbohydrate responsive element binding protein( ChREBP),sterol regulatory element binding protein-1 c( SREBP-1 c),fatty acid synthase( FAS),acetyl-CoA carboxylase 1( ACC1),stearoyl-CoA desaturase 1( SCD1),Bax and caspase-3 mRNA levels were significantly reduced in CBS drug-containing serum treatment group( P<0. 05). All of the above effects could be reversed by oltipraz.In conclusion,CBS-containing serum can significantly inhibit the fructose-induced LO2 liver fat deposition,and the mechanism may be related to reducing intracellular ROS level through the Nrf2 pathway and improving intracellular peroxidation state to reduce apoptosis.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Apoptosis
		                        			;
		                        		
		                        			Cattle
		                        			;
		                        		
		                        			Cells, Cultured
		                        			;
		                        		
		                        			Fatty Liver
		                        			;
		                        		
		                        			Fructose
		                        			;
		                        		
		                        			Gallstones
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Hepatocytes
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Lipid Metabolism
		                        			;
		                        		
		                        			Lipid Peroxidation
		                        			;
		                        		
		                        			Liver
		                        			;
		                        		
		                        			Medicine, Chinese Traditional
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Reactive Oxygen Species
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Serum
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Sterol Regulatory Element Binding Protein 1
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Triglycerides
		                        			
		                        		
		                        	
8.Effects of Tripterygium Glycosides Tablets from 6 different manufacturers on acute liver injury of normal mice.
Chun-Fang LIU ; Jing-Xuan ZHANG ; Yi-Qun LI ; Chun LI ; Xuan-Xuan ZHU ; Ke-Xin JIA ; Jin-Xia WANG ; Jing-Xia WANG ; Yuan-Fang FAN ; Ying XU ; Ting WANG ; Na LIN
China Journal of Chinese Materia Medica 2019;44(16):3494-3501
		                        		
		                        			
		                        			The aim of this paper was to compare the performance of acute liver injury in mice induced by Tripterygium Glycosides Tablets from 6 different manufacturers,and to explore the toxicity mechanism from the perspective of oxidative stress and apoptosis preliminarily. Male or female mice were randomly divided into normal group,Zhejiang group,Hunan group,Hubei group,Shanghai group,Jiangsu group and Fujian group. Mice in Tripgerygium Glycosides Tablets groups were given 16 times the clinical equivalent dose( 300 mg·kg-1) Tripgerygium Glycosides Tablets by oral administration for one time,mice were executed in 24 h after lavaged.Then the visceral brain coefficient of the organ was calculated. Histopathological changes of liver were observed by hematoxylin-eosin staining. Td T-mediated d UTP nick-end labeling was used to detect the apoptosis of the liver cells and the protein content of oxidative stress related factors in liver homogenate. Nuclear transcription factor E2-related factor( Nrf2) and heme oxygenase-1( HO-1) as well as mitochondrial mediated apoptosis-related protein expression levels of Bax and Bcl-2 in hepatic tissue were measured by Western blot.Within 24 hours of administration,6 male mice in Jiangsu group and 2 female mice in Zhejiang group were dying; compared with normal ones,liver coefficients of mice in Zhejiang,Shanghai,Jiangsu and Hunan groups were significantly increased,thymus coefficients in the first two groups were significantly reduced,as well as the lung coefficients of Fujian group mice,the rest was normal. In addition to Hubei group,serum AST,ALT or ALP levels of mice were increased,while TBi L were not being affected. Histopathological changes and apoptosis of liver cells were observed in all mice,and the degree of severity was ranked as Jiangsu,Zhejiang,Shanghai,Hunan,Hubei and Fujian group. All Tripterygium Glycosides Tablets increased the MDA and reduced the content of T-SOD,CAT or GSH in liver tissue while inhibited Nrf2,HO-1 and Bcl-2,increased the protein expression level of Bax( except Hunan group). Tripgerygium Glycosides Tablets from 6 manufacturers all resulted in liver function damage and liver histopathological changes,especially in Jiangsu,Hubei and Fujian,and the mechanism may related to inhibit Nrf2/HO-1 oxidative stress pathway and activate Bax/Bcl-2 apoptosis pathway to mediate lipid peroxidation and induce liver cell apoptosis. Triptolide A may be one of the main toxic components of Tripgerygium Glycosides Tablets that causing drug-induced liver injury. This study was conducted on normal mice with super dose medication,so the relevant results are for reference only.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Apoptosis
		                        			;
		                        		
		                        			Chemical and Drug Induced Liver Injury
		                        			;
		                        		
		                        			Drugs, Chinese Herbal
		                        			;
		                        		
		                        			toxicity
		                        			;
		                        		
		                        			Female
		                        			;
		                        		
		                        			Glycosides
		                        			;
		                        		
		                        			toxicity
		                        			;
		                        		
		                        			Heme Oxygenase-1
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Lipid Peroxidation
		                        			;
		                        		
		                        			Liver
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Membrane Proteins
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			NF-E2-Related Factor 2
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Oxidative Stress
		                        			;
		                        		
		                        			Proto-Oncogene Proteins c-bcl-2
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Random Allocation
		                        			;
		                        		
		                        			Tablets
		                        			;
		                        		
		                        			Tripterygium
		                        			;
		                        		
		                        			toxicity
		                        			;
		                        		
		                        			bcl-2-Associated X Protein
		                        			;
		                        		
		                        			metabolism
		                        			
		                        		
		                        	
9.Effects of Resistant Starch Supplementation on Glucose Metabolism, Lipid Profile, Lipid Peroxidation Marker, and Oxidative Stress in Overweight and Obese Adults: Randomized, Double-Blind, Crossover Trial
Fereshteh ESHGHI ; Farnush BAKHSHIMOGHADDAM ; Yousef RASMI ; Mohammad ALIZADEH
Clinical Nutrition Research 2019;8(4):318-328
		                        		
		                        			
		                        			Obesity is a substantial public health challenge across the globe. The use of resistant starch has been proposed as a probable management strategy for complications of obesity. We investigated the effects of resistant starch intake on lipid profiles, glucose metabolism, antioxidant status, lipid peroxidation marker, blood pressure, and anthropometric variables in subjects with overweight or obesity. In this 12-week, randomized, double-blind, placebo-controlled, 2 × 2 crossover trial, 21 Participants (mean age, 35 ± 7.0 years; body mass index, 32.4 ± 3.5 kg/m²) were given 13.5 g Hi-Maize 260 or placebo daily for 4 weeks, separated by a 4-week washout period. Changes in total antioxidant status (p = 0.04) and serum concentrations of insulin in 52.4% participants with insulin levels above 16 µIU/mL at the baseline (p = 0.04) were significantly different in the three phases. In addition, the mean of serum high-density lipoprotein cholesterol after the intervention was significantly higher than after baseline value (p = 0.04). We found no significant differences in serum concentrations of total cholesterol, triacylglycerol, low-density lipoprotein cholesterol, fasting blood sugar, insulin, homeostatic model assessment of insulin resistance, quantitative insulin sensitivity check index, superoxide dismutase activity, malondialdehyde, blood pressure, and anthropometric variables in the three phases of baseline, after intervention with resistant starch and after placebo. Resistant starch consumption improved serum insulin concentrations, lipid profiles, and antioxidant status in subjects with overweight or obesity. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT01992783
		                        		
		                        		
		                        		
		                        			Adult
		                        			;
		                        		
		                        			Blood Glucose
		                        			;
		                        		
		                        			Blood Pressure
		                        			;
		                        		
		                        			Body Mass Index
		                        			;
		                        		
		                        			Cholesterol
		                        			;
		                        		
		                        			Dietary Fiber
		                        			;
		                        		
		                        			Fasting
		                        			;
		                        		
		                        			Glucose
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Insulin
		                        			;
		                        		
		                        			Insulin Resistance
		                        			;
		                        		
		                        			Lipid Metabolism
		                        			;
		                        		
		                        			Lipid Peroxidation
		                        			;
		                        		
		                        			Lipoproteins
		                        			;
		                        		
		                        			Malondialdehyde
		                        			;
		                        		
		                        			Metabolism
		                        			;
		                        		
		                        			Obesity
		                        			;
		                        		
		                        			Overweight
		                        			;
		                        		
		                        			Oxidative Stress
		                        			;
		                        		
		                        			Public Health
		                        			;
		                        		
		                        			Starch
		                        			;
		                        		
		                        			Superoxide Dismutase
		                        			;
		                        		
		                        			Triglycerides
		                        			
		                        		
		                        	
10.Effects of Isoflavone Supplementation on Lipid Profiles and Antioxidant Enzyme Activities in Growing Rats Fed High Fat Diet
Clinical Nutrition Research 2019;8(4):296-306
		                        		
		                        			
		                        			The purpose of this study was to investigate the effects of isoflavone on serum lipids and antioxidant enzymes activities in growing rats fed high lard diet. Twenty four female Sprague-Dawley rats (body weight 50–60 g) were divided into three groups, control, high fat (HF, lard 200 g/kg diet) and high fat + isoflavone (HFI, lard 200 g/kg diet + isoflavone 310.9 mg/kg diet) for 4 weeks. The results of study indicated that body weight gain was not different by isoflavone diet. Mean intake was significantly lower in HF group and HFI group than control group. Food efficiency ratio was significantly higher in HF group and HFI group than control group. The level of serum triglyceride and total cholesterol were significantly lower in HFI group than control group and HF group. The level of high-density lipoprotein cholesterol, was significantly higher in control group than HF group and HFI group. The level of low-density lipoprotein cholesterol was not significantly different by experimental diets, but atherogenic index (AI) was significantly lower in control group and HFI group than HF group. Contents of total cholesterol and triglyceride in liver tissues were found to be insignificant. The concentration of lipid peroxidation, malondialdehyde was significantly lower in control groups and HFI group than HF group. And antioxidant enzymes in liver tissue were not significantly different by lard and isoflavone supplemented diets. In conclusion, it seems possible that isoflavone supplemented high fat diet may produce positive results on level of serum triglyceride, serum total cholesterol, AI and concentration of malondialdyhyde.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Antioxidants
		                        			;
		                        		
		                        			Body Weight
		                        			;
		                        		
		                        			Cholesterol
		                        			;
		                        		
		                        			Control Groups
		                        			;
		                        		
		                        			Diet
		                        			;
		                        		
		                        			Diet, High-Fat
		                        			;
		                        		
		                        			Female
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Isoflavones
		                        			;
		                        		
		                        			Lipid Peroxidation
		                        			;
		                        		
		                        			Lipoproteins
		                        			;
		                        		
		                        			Liver
		                        			;
		                        		
		                        			Malondialdehyde
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			Triglycerides
		                        			
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail