1.Effects of different routes of heparin on instant blood-mediated inflammatory reaction after portal vein islet transplantation.
Shengwang ZHANG ; Haixiong YAN ; Xiaoqian MA ; Wei ZHENG ; Wei WANG
Journal of Central South University(Medical Sciences) 2022;47(1):1-7
OBJECTIVES:
Heparin is mainly used as an anticoagulant in clinic, and it also has a certain anti-inflammatory effect. At present, after portal vein islet transplantation in diabetic patients, heparin is mainly infused through the peripheral veins of the limbs to achieve the purpose of anticoagulation and protection of the graft, rather than through the portal vein. In this study, animal experiments were conducted to investigate the effect of heparin infusion via the portal vein and marginal ear vein on the instant blood-mediated inflammatory reaction (IBMIR) after portal vein islet transplantation, which is the choice of anticoagulation methods for clinical islet transplantation to provide a basis for decision-making.
METHODS:
A total of 50 neonatal pigs (Xeno-1 type, 3-5 days) were selected. Islets were isolated and purified from the pancreas of neonatal pigs. Ten non-diabetic Landrace pigs (1.5-2.0 months) served as recipients, and 12 000 IEQ/kg neonatal porcine islets were transplanted into the liver through the portal vein. All recipients received bolus injection of 50 U/kg of heparin 10 minutes before transplantation. After the bolus injection of heparin, the experimental group received heparin via the portal vein [10 U/(kg·h), 5 recipients], and the control group received heparin via the marginal ear vein [10 U/(kg·h), 5 recipients]. The superior vena cava blood was collected from the 2 groups pre-operation at 1, 3, 24 h post-operation of the transplantation. The portal vein blood was collected from the experimental group at 1 and 3 h after the transplantation as well. The levels of complement C3a, C5a, thrombin-antithrombin complex (TAT), β-thromboglobulin (β-TG), and D-dimer as well as activated partial thromboplastin time (APTT) in superior vena cava blood from 1 and 3 h post-transplantation were detected in the 2 groups, and the levels of anti-Xa and anti-IIa in the portal vein and superior vena cava blood from 1 and 3 h post-transplantation in the experimental group were detected. Twenty four hours after the transplantation, the liver tissues in the 2 groups were collected for pathological examination to observe the inflammatory cell infiltration and peripheral thrombosis around the islets graft in liver.
RESULTS:
Before transplantation, there was no statistically significant difference in C3a, C5a, TAT, β-TG, D-dimer levels and APTT between the 2 groups (all P>0.05). At 1 and 3 h after transplantation, the C3a, TAT, and D-dimer levels in the experimental group were significant decreased than those in the control groups (all P<0.05), and at 3 h after transplantation the C5a was significant decreased than that in the control group (P<0.05). At 1 and 3 h after transplantation, the anti-Xa and anti-IIa levels in the portal vein blood were significantly increased than those in the superior vena cava blood in the experimental group (all P<0.05). Pathological results showed the presence of islet cell clusters in the liver blood vessels. The thrombus formation and neutrophil infiltration around islet graft was not obvious in the experimental group, while massive thrombus formation and neutrophil infiltration in the control group.
CONCLUSIONS
Compared with marginal ear vein infusion of heparin, the direct infusion of heparin in the portal vein has a certain inhibitory effect on complement system, coagulation system activation and inflammatory cell infiltration in portal vein islet transplantation, which may attenuate the occurrence of IBMIR.
Animals
;
Anticoagulants/therapeutic use*
;
Heparin/therapeutic use*
;
Humans
;
Islets of Langerhans/pathology*
;
Islets of Langerhans Transplantation/physiology*
;
Portal Vein
;
Swine
;
Vena Cava, Superior
2.Acquisition and application of functional pancreatic β cells: a review.
Guiqiyang XIANG ; Qinggui LIU ; Yiping HU ; Minjun WANG ; Fei CHEN
Chinese Journal of Biotechnology 2022;38(9):3316-3328
Insulin is produced and secreted by pancreatic β cells in the pancreas, which plays a key role in maintaining euglycemia. Insufficient secretion or deficient usage of insulin is the main cause of diabetes mellitus (DM). Drug therapy and islets transplantation are classical treatments for DM. Pancreatic β cell replacement therapy could help patients to get rid of drugs and alleviate the problem of lacking in transplantable donors. Pancreatic β-like cells can be acquired by cell reprogramming techniques or directed induction of stem cell differentiation. These cells are proved to be functional both in vitro and in vivo. Some hospitals have already performed clinical trials for pancreatic β cell replacement therapy. Functional pancreatic β-like cells, which obtained from in vitro pathway, could be a reliable source of cell therapy for treating DM. In this review, the approaches of obtaining pancreatic β cells are summarized and the remaining problems are discussed. Some thoughts are provided for further acquisition and application of pancreatic β cells.
Cell Differentiation
;
Diabetes Mellitus/therapy*
;
Humans
;
Insulin/metabolism*
;
Insulin-Secreting Cells/metabolism*
;
Islets of Langerhans Transplantation
;
Pancreas/metabolism*
3.Reduction of Inflammation and Enhancement of Motility after Pancreatic Islet Derived Stem Cell Transplantation Following Spinal Cord Injury
Erdal KARAOZ ; Filiz TEPEKOY ; Irem YILMAZ ; Cansu SUBASI ; Serdar KABATAS
Journal of Korean Neurosurgical Society 2019;62(2):153-165
OBJECTIVE: Spinal cord injury (SCI) is a very serious health problem, usually caused by a trauma and accompanied by elevated levels of inflammation indicators. Stem cell-based therapy is promising some valuable strategies for its functional recovery. Nestin-positive progenitor and/or stem cells (SC) isolated from pancreatic islets (PI) show mesenchymal stem cell (MSC) characteristics. For this reason, we aimed to analyze the effects of rat pancreatic islet derived stem cell (rPI-SC) delivery on functional recovery, as well as the levels of inflammation factors following SCI.METHODS: rPI-SCs were isolated, cultured and their MSC characteristics were determined through flow cytometry and immunofluorescence analysis. The experimental rat population was divided into three groups : 1) laminectomy & trauma, 2) laminectomy & trauma & phosphate-buffered saline (PBS), and 3) laminectomy+trauma+SCs. Green fluorescent protein (GFP) labelled rPI-SCs were transplanted into the injured rat spinal cord. Their motilities were evaluated with Basso, Beattie and Bresnahan (BBB) Score. After 4-weeks, spinal cord sections were analyzed for GFP labeled SCs and stained for vimentin, S100β, brain derived neurotrophic factor (BDNF), 2’,3’-cyclic-nucleotide 3'-phosphodiesterase (CNPase), vascular endothelial growth factor (VEGF) and proinflammatory (interleukin [IL]-6, transforming growth factor [TGF]-β, macrophage inflammatory protein [MIP]-2, myeloperoxidase [MPO]) and anti-inflammatory (IL-1 receptor antagonis) factors.RESULTS: rPI-SCs were revealed to display MSC characteristics and express neural and glial cell markers including BDNF, glial fibrillary acidic protein (GFAP), fibronectin, microtubule associated protein-2a,b (MAP2a,b), β3-tubulin and nestin as well as antiinflammatory prostaglandin E2 receptor, EP3. The BBB scores showed significant motor recovery in group 3. GFP-labelled cells were localized on the injury site. In addition, decreased proinflammatory factor levels and increased intensity of anti-inflammatory factors were determined.CONCLUSION: Transplantation of PI-SCs might be an effective strategy to improve functional recovery following spinal cord trauma.
Animals
;
Brain-Derived Neurotrophic Factor
;
Dinoprostone
;
Fibronectins
;
Flow Cytometry
;
Fluorescent Antibody Technique
;
Glial Fibrillary Acidic Protein
;
Inflammation
;
Islets of Langerhans
;
Laminectomy
;
Macrophages
;
Mesenchymal Stromal Cells
;
Microtubules
;
Nestin
;
Neuroglia
;
Peroxidase
;
Rats
;
Regeneration
;
Spinal Cord Injuries
;
Spinal Cord
;
Stem Cell Transplantation
;
Stem Cells
;
Transforming Growth Factors
;
Vascular Endothelial Growth Factor A
;
Vimentin
;
Wounds and Injuries
4.Current Status of Stem Cell Treatment for Type I Diabetes Mellitus.
Anupama KAKKAR ; Ashima SOROUT ; Mahak TIWARI ; Pallavi SHRIVASTAVA ; Poonam MEENA ; Sumit Kumar SARASWAT ; Supriya SRIVASTAVA ; Rajan DATT ; Siddharth PANDEY
Tissue Engineering and Regenerative Medicine 2018;15(6):699-709
BACKGROUND: Diabetes mellitus is a major health concern in current scenario which has been found to affect people of almost all ages. The disease has huge impact on global health; therefore, alternate methods apart from insulin injection are being explored to cure diabetes. Therefore, this review mainly focuses on the current status and therapeutic potential of stem cells mainly mesenchymal stem cells (MSCs) for Type 1 diabetes mellitus in preclinical animal models as well as humans. METHODS: Current treatment for Type 1 diabetes mellitus mainly includes use of insulin which has its own limitations and also the underlying mechanism of diseases is still not explored. Therefore, alternate methods to cure diabetes are being explored. Stem cells are being investigated as an alternative therapy for treatment of various diseases including diabetes. Few preclinical studies have also been conducted using undifferentiated MSCs as well as in vitro MSCs differentiated into β islet cells. RESULTS: These stem cell transplant studies have highlighted the benefits of MSCs, which have shown promising results. Few human trials using stem cells have also affirmed the potential of these cells in alleviating the symptoms. CONCLUSION: Stem cell transplantation may prove to be a safe and effective treatment for patients with Type 1 diabetes mellitus.
Bone Marrow
;
Diabetes Mellitus*
;
Diabetes Mellitus, Type 1
;
Global Health
;
Humans
;
In Vitro Techniques
;
Insulin
;
Islets of Langerhans
;
Mesenchymal Stromal Cells
;
Models, Animal
;
Stem Cell Transplantation
;
Stem Cells*
5.Alginate-Catechol Cross-Linking Interferes with Insulin Secretion Capacity in Isolated Murine Islet Cells.
Yu Sik KIM ; Seung Woo CHO ; Bomin KO ; Jisoo SHIN ; Chul Woo AHN
Diabetes & Metabolism Journal 2018;42(2):164-168
Over the past three decades, human pancreatic islet isolation and transplantation techniques have developed as a routine clinical procedure for selected patients with type 1 diabetes mellitus. However, due to the donor shortage and required chronic systemic immunosuppression, the widespread application of islet transplantation is limited. To overcome these limitations, providing a physical barrier to transplanted islet cells with encapsulating biomaterial has emerged as a promising approach to enhance engraftment and promote islet survival post-transplantation. Alginate has been considered to be a reliable biomaterial, as it enhances islet survival and does not hamper hormone secretion. Alginate-catechol (Al-CA) hydrogel was reported to provide high mechanical strength and chemical stability without deformation over a wide range of pH values. In this study, we, demonstrated, for the first time in the literature, that encapsulation of murine pancreatic islet cells with Al-CA hydrogel does not induce cytotoxicity ex vivo for an extended period; however, it does markedly abate glucose-stimulated insulin secretion. Catechol should not be considered as a constituent for alginate gelation for encapsulating islet cells in the application of islet transplantation.
Architectural Accessibility
;
Diabetes Mellitus, Type 1
;
Humans
;
Hydrogel
;
Hydrogen-Ion Concentration
;
Immunosuppression
;
Insulin*
;
Islets of Langerhans Transplantation
;
Islets of Langerhans*
;
Temefos
;
Tissue Donors
6.Stepwise Approach to Problematic Hypoglycemia in Korea: Educational, Technological, and Transplant Interventions.
Endocrinology and Metabolism 2017;32(2):190-194
Impaired awareness of hypoglycemia has been found to be prevalent in 20% to 40% of people with type 1 diabetes. If a similar prevalence exists in Koreans with type 1 diabetes, at a minimum, thousands of people with type 1 diabetes suffer at least one unpredicted episode of severe hypoglycemia per year in Korea. For patients with problematic hypoglycemia, an evidence-based stepwise approach was suggested in 2015. The first step is structured education regarding multiple daily injections of an insulin analog, and the second step is adding a technological intervention, such as continuous subcutaneous insulin infusion or real-time continuous glucose monitoring. The next step is a sensor-augmented pump, preferably with a low glucose suspension feature or very frequent contact, and the final step is islet or pancreas transplantation. In Korea, however, none of these treatments are reimbursed by the National Health Insurance, and thus have not been widely implemented. The low prevalence of type 1 diabetes means that Korean physicians are relatively unfamiliar with the new technologies in this field. Therefore, the roles of new technologies and pancreas or islet transplantation in the treatment of problematic hypoglycemia need to be defined in the current clinical setting of Korea.
Education
;
Glucose
;
Humans
;
Hypoglycemia*
;
Insulin
;
Islets of Langerhans Transplantation
;
Korea*
;
National Health Programs
;
Pancreas
;
Pancreas Transplantation
;
Prevalence
7.Is islet transplantation a realistic approach to curing diabetes?.
The Korean Journal of Internal Medicine 2017;32(1):62-66
Since the report of type 1 diabetes reversal in seven consecutive patients by the Edmonton protocol in 2000, pancreatic islet transplantation has been reappraised based on accumulated clinical evidence. Although initially expected to therapeutically target long-term insulin independence, islet transplantation is now indicated for more specific clinical benefits. With the long-awaited report of the first phase 3 clinical trial in 2016, allogeneic islet transplantation is now transitioning from an experimental to a proven therapy for type 1 diabetes with problematic hypoglycemia. Islet autotransplantation has already been therapeutically proven in chronic pancreatitis with severe abdominal pain refractory to conventional treatments, and it holds promise for preventing diabetes after partial pancreatectomy due to benign pancreatic tumors. Based on current evidence, this review focuses on islet transplantation as a realistic approach to treating diabetes.
Abdominal Pain
;
Autografts
;
Humans
;
Hypoglycemia
;
Insulin
;
Islets of Langerhans
;
Islets of Langerhans Transplantation*
;
Pancreatectomy
;
Pancreatitis, Chronic
;
Transplantation, Autologous
8.Polyglycolic Acid Fibrous Scaffold Improving Endothelial Cell Coating and Vascularization of Islet.
Yang LI ; Ping FAN ; Xiao-Ming DING ; Xiao-Hui TIAN ; Xin-Shun FENG ; Hang YAN ; Xiao-Ming PAN ; Pu-Xun TIAN ; Jin ZHENG ; Chen-Guang DING ; Wu-Jun XUE
Chinese Medical Journal 2017;130(7):832-839
BACKGROUNDImproving islet graft revascularization has become a crucial task for prolonging islet graft survival. Endothelial cells (ECs) are the basis of new microvessels in an isolated islet, and EC coating has been demonstrated to improve the vascularization and survival of an islet. However, the traditional method of EC coating of islets has low efficiency in vitro. This study was conducted to evaluate the effect of a polyglycolic acid (PGA) scaffold on the efficiency of islet coating by ECs and the angiogenesis in the coated islet graft.
METHODSA PGA fibrous scaffold was used for EC coating of islet culture and was evaluated for its efficiency of EC coating on islets and islet graft angiogenesis.
RESULTSIn in vitro experiments, we found that apoptosis index of ECs-coating islet in PGA group (27% ± 8%) was significantly lower than that in control group (83% ± 20%, P < 0.05) after 7 days culture. Stimulation index was significantly greater in the PGA group than in the control group at day 7 after ECs-coating (2.07 ± 0.31 vs. 1.80 ± 0.23, P < 0.05). vascular endothelial growth factor (VEGF) level in the PGA group was significantly higher than the coating in the control group after 7 days culture (52.10 ± 13.50 ng/ml vs. 16.30 ± 8.10 ng/ml, P < 0.05). Because of a tight, circumvallated, adhesive and three-dimensional growth microenvironment, islet cultured in a PGA scaffold had higher coating efficiency showing stronger staining intensity of enzyme than those in the control group after 14 days of culture following ECs-coating. For in vivo study, PGA scaffold significantly prolonged the average survival time of EC-coated islet graft after transplantation compared with control group (15.30 ± 5.60 days vs. 8.30 ± 2.45 days, P < 0.05). The angiogenesis and area of survived grafts were more in the PGA group compared with the control group by measuring the mean microvessel density (8.60 ± 1.21/mm2 vs. 5.20 ± 0.87/mm2, P < 0.05). In addition, expression of VEGF and tyrosin-protein kinase receptor (Tie-2) gene increased in PGA scaffold group than that in control group by real-time reverse transcription-polymerase chain reaction analysis.
CONCLUSIONSThese results demonstrate that the efficiency of EC coating of islets was successfully increased by culturing ECs on a PGA scaffold. This method enhances the function, survival, and vascularization of isolated islets in vitro and in vivo.
Animals ; Apoptosis ; drug effects ; Endothelial Cells ; drug effects ; Enzyme-Linked Immunosorbent Assay ; Graft Survival ; drug effects ; Insulin ; metabolism ; Islets of Langerhans ; drug effects ; Islets of Langerhans Transplantation ; methods ; Neovascularization, Physiologic ; drug effects ; Polyglycolic Acid ; chemistry ; pharmacology ; Rats ; Rats, Sprague-Dawley ; Rats, Wistar ; Tissue Scaffolds ; chemistry
9.Gastric submucosa is inferior to the liver as transplant site for autologous islet transplantation in pancreatectomized diabetic Beagles.
Zhu-Zeng YIN ; Shu-Sen WANG ; Qiang LI ; Ying HUANG ; Li CHEN ; Gang CHEN ; Rong LIU ; Xi-Mo WANG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2016;36(4):529-533
Intraportal transplantation of islets is no longer considered to be an ideal procedure and finding the extrahepatic alternative site is becoming a subject of high priority. Herein, in this study, we would introduce our initial outcomes of using gastric submucosa (GS) and liver as sites of islet autotransplantation in pancreatectomized diabetic Beagles. Total pancreatectomy was performed in Beagles and then their own islets extracted from the excised pancreas were transplanted into GS (GS group, n=8) or intrahepatic via portal vein (PV group, n=5). Forty-eight hours post transplantation, graft containing tissue harvested from the recipients revealed the presence of insulin-positive cells. All recipients in GS group achieved euglycemia within 1 day, but returned to a diabetic state at 6 to 8 days post-transplantation (mean survival time, 7.16±0.69 days). However, all of the animals kept normoglycemic until 85 to 155 days post-transplantation in PV group (mean survival time, 120±28.58 days; P<0.01 vs. GS group). The results of intravenous glucose tolerance test (IVGTT) confirmed that the marked improvement in glycometabolism was obtained in intrahepatic islet autotransplantation. Thus, our findings indicate that the liver is still superior to the GS as the site of islet transplantation, at least in our islet autotransplant model in pancreatectomized diabetic Beagles.
Animals
;
Diabetes Mellitus, Experimental
;
metabolism
;
pathology
;
therapy
;
Dogs
;
Gastric Mucosa
;
metabolism
;
transplantation
;
Glucose
;
metabolism
;
Glucose Tolerance Test
;
Graft Survival
;
Humans
;
Insulin
;
metabolism
;
Islets of Langerhans Transplantation
;
Liver
;
pathology
;
Liver Transplantation
;
Transplantation, Autologous
10.Implications of Calcineurin/NFAT Inhibitors' Regulation of Dendritic Cells and Innate Immune Cells in Islet Xenotransplantation.
Yong Hee KIM ; Won Woo LEE ; Chung Gyu PARK
Journal of Bacteriology and Virology 2016;46(1):1-12
Calcineurin inhibitors, such as cyclosporine and tacrolimus (FK506) are broadly used in organ transplantations as immune suppressants. As the calcineurin/NFAT signaling pathway has been identified as critical pathway in the interleukin-2 (IL-2) production of T cells, inhibition of T-cell derived IL-2 has been considered the major mechanism of calcineurin inhibitors. However, there is increasing evidence that NFAT transcription factor is involved in multiple functions of dendritic cells and innate immune cells as well. NFAT expression is not restricted to T cells, and IL-2 can be produced in dendritic cells and macrophages through the calcineurin/NFAT pathway. Furthermore, it has been discovered that NFAT regulates expressions of several inflammatory mediators, including TNF-α and cyclooxygenase-2 in innate immune cells. Therefore, calcineurin inhibitors may have much broader effects in the transplant recipients than previously being considered. In this review, we reviewed recently discovered roles of NFAT pathway in dendritic cells and innate immune cells, and discussed positive and negative implications of calcineurin inhibitors' broader effects with a focus on islet xenotransplantation.
Calcineurin
;
Critical Pathways
;
Cyclooxygenase 2
;
Cyclosporine
;
Dendritic Cells*
;
Immunity, Innate
;
Interleukin-2
;
Islets of Langerhans Transplantation
;
Macrophages
;
Organ Transplantation
;
T-Lymphocytes
;
Tacrolimus
;
Transcription Factors
;
Transplantation
;
Transplantation, Heterologous*
;
Transplants

Result Analysis
Print
Save
E-mail