1.Carfilzomib inhibits the growth of lung adenocarcinoma via upregulation of Gadd45a expression.
Fang YANG ; Wang-Wang LIU ; Hui CHEN ; Jia ZHU ; Ai-Hua HUANG ; Fei ZHOU ; Yi GAN ; Yan-Hua ZHANG ; Li MA
Journal of Zhejiang University. Science. B 2020;21(1):64-76
Proteasome inhibitors have shown remarkable success in the treatment of hematologic neoplasm. There has been a lot of attention to applying these drugs for solid tumor treatment. Recent preclinical study has signified the effectiveness on cell proliferation inhibition in lung adenocarcinoma treated by carfilzomib (CFZ), a second generation proteasome inhibitor. However, no insight has been gained regarding the mechanism. In this study, we have systematically investigated the CFZ functions in cell proliferation and growth, cell cycle arrest, and apoptosis in lung adenocarcinoma cells. Flow cytometry experiments showed that CFZ significantly induced G2/M cell cycle arrest and apoptosis in lung adenocarcinoma. MTS and colony formation assays revealed that CFZ substantially inhibited survival of lung adenocarcinoma cells. All results were consistently correlated to the upregulation expression of Gadd45a, which is an important gene in modulating cell cycle arrest and apoptosis in response to physiologic and environmental stresses. Here, upregulation of Gadd45a expression was observed after CFZ treatment. Knocking down Gadd45a expression suppressed G2/M arrest and apoptosis in CFZ-treated cells, and reduced cytotoxicity of this drug. The protein expression analysis has further identified that the AKT/FOXO3a pathway is involved in Gadd45a upregulation after CFZ treatment. These findings unveil a novel mechanism of proteasome inhibitor in anti-solid tumor activity, and shed light on novel preferable therapeutic strategy for lung adenocarcinoma. We believe that Gadd45a expression can be a highly promising candidate predictor in evaluating the efficacy of proteasome inhibitors in solid tumor therapy.
Adenocarcinoma of Lung/pathology*
;
Apoptosis/drug effects*
;
Cell Cycle Checkpoints/drug effects*
;
Cell Cycle Proteins/genetics*
;
Cell Line, Tumor
;
Forkhead Box Protein O3/physiology*
;
Gene Expression Regulation, Neoplastic/drug effects*
;
Humans
;
Lung Neoplasms/pathology*
;
Oligopeptides/pharmacology*
;
Proto-Oncogene Proteins c-akt/physiology*
;
Up-Regulation
2.Mechanism of β-carboline alkaloids inhibiting migration and invasion of SGC-7901 cells.
Tao XI ; Huan XIA ; Yu-Xiang FAN ; Yong-Cheng CAO ; Hong-Liang ZHANG
China Journal of Chinese Materia Medica 2019;44(1):119-124
To explore the mechanism of β-carboline alkaloids inhibiting the migration and invasion of SGC-7901 cells and its correlation with FAK gene expression,CCK-8 method was used to determine the inhibitory rate of β-carboline alkaloids on the proliferation of gastric cancer SGC-7901 cells under different concentrations.The effect of β-carboline alkaloids on the migration and invasion of SGC-7901 cells was used by Transwell compartment.Detection of mRNA and protein expression of FAK genes were used by qRT-PCR and Western blot.Then si-FAK-1051 recombinant plasmid was transfected into SGC-7901 cells.FAK gene silencing effect was identified by qRT-PCR and Western blot technique again.Finally,the effects of FAK gene silencing on proliferation and migration of gastric cancer SGC-7901 cells were detected by CCK-8 kit and Transwell chamber assay respectively.With the increase of the concentration ofβ-carboline alkaloids,the inhibitory rate of SGC-7901 cells in human gastric cancer cells increased gradually,with IC5013.364 mg·L-1.The number of SGC-7901 cells of Transwell compartment in the positive experimental group(5-FU,5 mg·L-1) and the β-carboline alkaloids group decreased significantly(P<0.01) and the number of SGC-7901 cells in the β-carboline alkaloids group was significantly lower than that in the positive experimental group(P<0.01).Compared with the blank control group,the mRNA and protein expression level of FAK genes in the positive experimental group was significantly lower than that in the experimental group of β-carboline alkaloids(P<0.05).After transfection of si-FAK-1051 into gastric cancer SGC-7901 cells,the expression of mRNA and protein of FAK gene was significantly down regulated(P<0.05).SGC-7901 cell proliferation and cell migration ability also decreased significantly(P<0.05).β-carboline alkaloids are more effective than 5-FU in inhibiting migration and invasion of gastric cancer SGC-7901 cells,and the mechanism may be related to the inhibition of mRNA and protein expression of FAK gene by β-carboline alkaloids.
Alkaloids
;
pharmacology
;
Carbolines
;
pharmacology
;
Cell Line, Tumor
;
Cell Movement
;
drug effects
;
Cell Proliferation
;
Focal Adhesion Kinase 1
;
genetics
;
Gene Expression Regulation, Neoplastic
;
Gene Silencing
;
Humans
;
Neoplasm Invasiveness
;
Stomach Neoplasms
;
drug therapy
;
pathology
3.Bioinformatics analysis of COL1A1 regulated by miR-129-5p as a potential therapeutic target for gastric cancer.
Wanxia YANG ; Yunyan PAN ; Peiwen GUAN ; Xue LI ; Chongge YOU
Journal of Southern Medical University 2019;39(5):540-546
OBJECTIVE:
To explore the pathogenesis of gastric cancer through a bioinformatic approach to provide evidence for the prevention and treatment of gastric cancer.
METHODS:
The differentially expressed genes (DEGs) in gastric cancer and normal gastric mucosa in GSE79973 dataset were analyzed using GEO2R online tool. GO analysis and KEGG pathway enrichment analysis of the DEGs in DAVID database were performed. The protein interaction network was constructed using STRING database, and the key genes (Hub genes) were screened and their functional modules were analyzed using Cytoscape software. The GEPIA database was used to validate the Hub genes, and the Target Scan database was used to predict the microRNAs that regulate the target genes; OncomiR was used to analyze the expressions of the microRNAs in gastric cancer tissues and their relationship with the survival outcomes of the patients.
RESULTS:
A total of 181 DEGs were identified in gastric cancer, and 10 hub genes were screened by the protein- protein interaction network. Functional analysis showed that these DEGs were involved mainly in protein digestion and absorption, PI3K-Akt signaling pathway, ECM-receptor interaction and platelet activation signal pathway. GEPIA database validation showed that COL1A1 was highly expressed in gastric cancer tissues and was associated with a poor prognosis of patients with gastric cancer. MiR-129-5p was found to bind to the 3'UTR of COL1A1 mRNA, and compared with that in normal tissues, miR-129-5p expression was obviously down-regulated in gastric cancer tissues, and was correlated with the prognosis of the patients.
CONCLUSIONS
COL1A1 under regulation by MiR-129-5p is a potential therapeutic target for gastric cancer.
Collagen Type I
;
drug effects
;
Computational Biology
;
Gene Expression Profiling
;
Gene Expression Regulation, Neoplastic
;
Humans
;
MicroRNAs
;
therapeutic use
;
Phosphatidylinositol 3-Kinases
;
Stomach Neoplasms
;
drug therapy
4.MicroRNA-152 and microRNA-448 inhibit proliferation of colorectal cancer cells by targeting Rictor.
Jie ZHANG ; Zengsheng HAN ; Lixin DONG ; Zhen LI ; Kun LI ; Ming SHI ; Zhiwei LIU ; Jian LI
Journal of Southern Medical University 2019;39(5):533-539
OBJECTIVE:
To screen the microRNAs (miRNAs) targeting Rictor and investigate their effects in regulating the biological behaviors of colorectal cancer (CRC).
METHODS:
Human colorectal cancer cell line KM12SM was transfected with the miRNAs targeting Rictor identified by prediction software to test inhibitory effects of these miRNAs on Rictor expression using qRT-PCR and Western blotting. Dual luciferase reporter assay was used to further confirm the binding of these miRNAs to the 3'UTR of Rictor mRNA. Cell survival and colony formation assays were used to investigate the effects of these miRNAs on survival and colony formation in KM12SM cells.
RESULTS:
miR-152 and miR-448 were identified as the Rictor-targeting miRNAs, which significantly inhibited the expression of Rictor in KM12SM cells ( < 0.05). The two miRNAs were confirmed to bind to the 3'UTR of Rictor mRNA and significantly inhibited luciferase activity in KM12SM cells ( < 0.01, < 0.05); they also showed activities of posttranscriptional modulation of Rictor. Overexpression of miR-152 and miR-448 both significantly inhibited the growth and colony formation of KM12SM cells.
CONCLUSIONS
miR-152 and miR-448 can down-regulate the protein expression of Rictor by targeting Rictor mRNA to negatively regulate the growth and colony formation of colorectal cancer cells.
3' Untranslated Regions
;
Cell Line, Tumor
;
Cell Proliferation
;
Colorectal Neoplasms
;
drug therapy
;
Gene Expression Regulation, Neoplastic
;
Humans
;
MicroRNAs
;
pharmacology
;
Rapamycin-Insensitive Companion of mTOR Protein
;
drug effects
5.Lineage plasticity-mediated therapy resistance in prostate cancer.
Alexandra M BLEE ; Haojie HUANG
Asian Journal of Andrology 2019;21(3):241-248
Therapy resistance is a significant challenge for prostate cancer treatment in clinic. Although targeted therapies such as androgen deprivation and androgen receptor (AR) inhibition are effective initially, tumor cells eventually evade these strategies through multiple mechanisms. Lineage reprogramming in response to hormone therapy represents a key mechanism that is increasingly observed. The studies in this area have revealed specific combinations of alterations present in adenocarcinomas that provide cells with the ability to transdifferentiate and perpetuate AR-independent tumor growth after androgen-based therapies. Interestingly, several master regulators have been identified that drive plasticity, some of which also play key roles during development and differentiation of the cell lineages in the normal prostate. Thus, further study of each AR-independent tumor type and understanding underlying mechanisms are warranted to develop combinational therapies that combat lineage plasticity in prostate cancer.
Androgen Antagonists/therapeutic use*
;
Androgen Receptor Antagonists/therapeutic use*
;
Gene Expression Regulation, Neoplastic
;
Humans
;
Male
;
Prostatic Neoplasms/genetics*
;
Prostatic Neoplasms, Castration-Resistant/genetics*
;
Receptors, Androgen/drug effects*
6.Effect of ursolic acid on invasion and migration of hepatocellular carcinoma cells co-cultured with macrophages and the underlying mechanisms.
Journal of Central South University(Medical Sciences) 2018;43(11):1188-1193
To investigate the effect of ursolic acid on the invasion and migration of hepatocellular carcinoma (HCC) cells co-cultured with macrophages, and to explore the underlying mechanisms.
Methods: The migration and invasion ability of HCC cells in the co-culture system with or without ursolic acid intervention were evaluated by transwell assay. The levels of epithelial-mesenchymal transition (EMT) markers E-cadherin, N-cadherin, and vimentin in HCC cells co-cultured with macrophages were detected by Western blot.
Results: The migration and invasion ability and EMT were significantly enhanced when co-cultured with macrophages, and the expression of E-cadherin was significantly increased while N-cadherin and vimentin levels were significantly decreased. However, after ursolic acid treatment, the migration and invasion ability were significantly reduced, and the expression of E-cadherin was increased while N-cadherin and vimentin levels were decreased.
Conclusion: Ursolic acid exerts inhibitory effect on the ability of migration, invasion, and EMT for HCC, which are enhanced by co-culturing with macrophages.
Cadherins
;
genetics
;
Carcinoma, Hepatocellular
;
pathology
;
Cell Line, Tumor
;
Cell Movement
;
drug effects
;
Coculture Techniques
;
Epithelial-Mesenchymal Transition
;
Gene Expression Regulation, Neoplastic
;
drug effects
;
Humans
;
Liver Neoplasms
;
pathology
;
Macrophages
;
cytology
;
Neoplasm Invasiveness
;
pathology
;
Triterpenes
;
pharmacology
7.Differential expression of serum miRNAs in patients with advanced non-small cell lung cancer treated by gifitinib before and after acquiring drug resistance.
Journal of Central South University(Medical Sciences) 2018;43(12):1288-1293
To explore the differential expression of serum miRNAs in patients of advanced non- small cell lung cancer (NSCLC) treated by gifitinib before and after acquiring drug resistance.
Methods: A total of 4 patients with advanced NSCLC from Affiliated Hospital of Yueyang Vocational Technical College, who acquired drug resistance during gefitinib therapy from June 2013 to June 2015, were enrolled. Serum samples were collected before treatment and after acquiring drug resistance. MicroRNA (miRNA) microarray was used to assess the levels and compositions of miRNAs in serum. Real-time RT-PCR was used to validate the results of miRNAs with significant differences in expression. The candidate miRNAs inhibitors and mimics were transfected into lung cancer cells by liposome, and the sensitivity of lung cancer cells to gifitinib was detected.
Results: The miRNA microarray showed that there were significantly differential expression of miRNAs in serum of NSCLC patients after acquiring drug resistance, and 24 miRNAs were changed in more than 2-fold. Among them, 19 miRNAs were up-regulated and 5 miRNAs were down- regulated (both P<0.05). Especially, the expression of miR-21 in serum of NSCLC patients after obtaining resistance was up-regulated more than 10-fold compared with that before treatment. The results of RT-PCR was consistent with the results of miRNA microarray. The up-regulation of miR-21 in lung cancer cells could elevate the half maximal inhibition concentration (IC50) of gefitinib, and the down-regulation of miR-21 in lung cancer cells could reduce the IC50 of gefitinib (both P<0.05).
Conclusion: There is differential expression of miRNAs in serum of NSCLC patients before treatment and after acquiring drug resistance during gefitinib therapy. The up-regulation of miR-21 may be involved in regulating the acquiring drug resistance of gefitinib.
Antineoplastic Agents
;
pharmacology
;
therapeutic use
;
Carcinoma, Non-Small-Cell Lung
;
drug therapy
;
Cell Line, Tumor
;
Drug Resistance, Neoplasm
;
drug effects
;
genetics
;
Gene Expression Regulation, Neoplastic
;
drug effects
;
Humans
;
Lung Neoplasms
;
drug therapy
;
MicroRNAs
;
blood
;
genetics
8.Effect of AG490 on JAK2/STAT3 signaling pathway in human retinoblastoma HXO-RB44 cell lines.
Bei XU ; Xiang CHEN ; Jia TAN ; Xueliang XU
Journal of Central South University(Medical Sciences) 2018;43(10):1061-1067
To investigate the role of Janus kinase (JAK) inhibitor AG490 in the anti-proliferation and cell cycle in human retinoblastoma HXO-RB44 cell lines in vitro, and to explore its effect on the expression of JAK2/signal transducer and activator of transcription 3 (STAT3).
Methods: Cells were divided into an experiment group and a control group, and the experiment group was further divided into 6 sub-groups according to different AG490 concentrations (6.25, 12.50, 25.00, 50.00 or 100.00 μmol/L). Cell proliferation in the different groups was analyzed by cell vitality determination. Cell cycle distribution and apoptosis rate were examined by flow cytometry. The protein levels of STAT3, p-STAT3 and vascular endothelial growth factor (VEGF) were detected by Western blot.
Results: After 48 h treatment with AG490, the viability of HXO-RB44 cells was reduced in a concentration-dependent manner. Compared with the control group, there was no significant difference in the experiment groups except the 6.25 μmol/L group (all P>0.05). The apoptosis rates in the experiment groups were significantly increased with increase in concentration of AG490 compared with that in the control group (all P<0.05). The cell ratio in the G1 phase in 50 or 100 μmol/L group was increased, whereas the cell ratio in the S phase was decreased. Western blot results showed that the expressions of STAT3 and p-STAT3 in the experiment groups were dramatically reduced with the increase in concentration of AG490 compared with that in the control group (all P<0.05). VEGF expression didn't obviously change in the experiment groups with AG490 concentration less than 12.5 μmol/L compared with that in the control group (both P>0.05), but there were significant differences in the other experiment groups (all P<0.05).
Conclusion: JAK inhibitor AG490 can inhibit proliferation and promote apoptosis of the retinoblastoma HXO-RB44 cells through down-regulation of JAK2/STAT3 signaling pathway.
Apoptosis
;
drug effects
;
Cell Line, Tumor
;
Cell Proliferation
;
drug effects
;
Cell Survival
;
drug effects
;
Enzyme Inhibitors
;
pharmacology
;
Gene Expression Regulation, Neoplastic
;
drug effects
;
Humans
;
Janus Kinase 2
;
genetics
;
metabolism
;
Retinoblastoma
;
STAT3 Transcription Factor
;
genetics
;
metabolism
;
Signal Transduction
;
drug effects
;
Tyrphostins
;
pharmacology
;
Vascular Endothelial Growth Factor A
;
metabolism
9.BRD4 interacts with PML/RARα in acute promyelocytic leukemia.
Qun LUO ; Wanglong DENG ; Haiwei WANG ; Huiyong FAN ; Ji ZHANG
Frontiers of Medicine 2018;12(6):726-734
Bromodomain-containing 4 (BRD4) has been considered as an important requirement for disease maintenance and an attractive therapeutic target for cancer therapy. This protein can be targeted by JQ1, a selective small-molecule inhibitor. However, few studies have investigated whether BRD4 influenced acute promyelocytic leukemia (APL), and whether BRD4 had interaction with promyelocytic leukemia-retinoic acid receptor α (PML/RARα) fusion protein to some extent. Results from cell viability assay, cell cycle analysis, and Annexin-V/PI analysis indicated that JQ1 inhibited the growth of NB4 cells, an APL-derived cell line, and induced NB4 cell cycle arrest at G1 and apoptosis. Then, we used co-immunoprecipitation (co-IP) assay and immunoblot to demonstrate the endogenous interaction of BRD4 and PML/RARα in NB4 cells. Moreover, downregulation of PML/RARα at the mRNA and protein levels was observed upon JQ1 treatment. Furthermore, results from the RT-qPCR, ChIP-qPCR, and re-ChIP-qPCR assays showed that BRD4 and PML/RARα co-existed on the same regulatory regions of their target genes. Hence, we showed a new discovery of the interaction of BRD4 and PML/RARα, as well as the decline of PML/RARα expression, under JQ1 treatment.
Apoptosis
;
drug effects
;
Azepines
;
pharmacology
;
Cell Differentiation
;
Down-Regulation
;
Gene Expression Regulation, Neoplastic
;
drug effects
;
Humans
;
Leukemia, Promyelocytic, Acute
;
drug therapy
;
genetics
;
Nuclear Proteins
;
genetics
;
Promyelocytic Leukemia Protein
;
genetics
;
RNA, Messenger
;
genetics
;
Retinoic Acid Receptor alpha
;
genetics
;
Transcription Factors
;
genetics
;
Triazoles
;
pharmacology
;
Tumor Cells, Cultured
10.Research Advances of Ang-2 in Non-small Cell Lung Cancer.
Chinese Journal of Lung Cancer 2018;21(11):868-874
Non-small cell lung cancer (NSCLC) is one of the malignant tumors with highest mortality in the world, it is still a difficult problem in clinical field. Its occurrence and development are closely associated with tumor angiogenesis. Angiopoietin-2 (Ang-2) is an important angiogenesis factor that has involved in many researches and it has been confirmed that the expression of Ang-2 is significantly up-regulated in tissues and blood of NSCLC. Meanwhile, Ang-2 is related to malignant biological behavior of cancer cells, making it a potential biological marker for the diagnosis and prognosis of NSCLC. At present, researches on Ang-2 how to promote the progression of NSCLC around the world are focused on Ang-2 regulating the proliferation, invasion, and metastasis of NSCLC. This paper summarized and estimated the studies and literature reports of regulatory mechanisms of Ang-2 in NSCLC, hopefully it could help looking for targeted drug treatment of Ang-2 in the future.
.
Angiopoietin-2
;
genetics
;
metabolism
;
Carcinoma, Non-Small-Cell Lung
;
drug therapy
;
genetics
;
metabolism
;
pathology
;
Gene Expression Regulation, Neoplastic
;
drug effects
;
Humans
;
Lung Neoplasms
;
drug therapy
;
genetics
;
metabolism
;
pathology
;
Molecular Targeted Therapy
;
Signal Transduction
;
drug effects

Result Analysis
Print
Save
E-mail