1.Progress in the research of negative feedback effect of thyroglobulin.
Fei CHEN ; Hongjuan WANG ; Qiang LI ; Zhichao LI ; Yuqian LUO
Journal of Southern Medical University 2019;39(1):125-126
Thyroglobulin is the most important and abundant protein in thyroid follicles and has been widely studied as a tumor marker of thyroid cancer recurrence and persistence. Tg is considered the material basis of thyroid hormone synthesis and does not participate in the regulation of thyroid hormone synthesis and secretion. This review summarizes the recent progress in the research of thyroid hormone synthesis and secretion regulation via a negative feedback regulation mechanism by the thyroid-hypothalamus-pituitary axis. Thyroglobulin can negatively regulate the synthesis of thyroid hormone by thyroid follicular cells and antagonize the positive regulation of thyrotropin TSH. The function of thyroid follicular cells is presumably a result of Tg and TSH interaction, and a follicular cycle model is proposed to explain the causes of follicular heterogeneity in glands. We also discuss the prospects and clinical significance of studies into the negative feedback regulation mechanism of the thyroid-hypothalamus-pituitary axis and compare two theories for this mechanism.
Feedback, Physiological
;
Humans
;
Hypothalamo-Hypophyseal System
;
physiology
;
Neoplasm Recurrence, Local
;
Thyroglobulin
;
metabolism
;
Thyroid Gland
;
physiology
;
Thyroid Hormones
;
metabolism
;
Thyrotropin
;
metabolism
2.Role of inhibition of osteogenesis function by Sema4D/Plexin-B1 signaling pathway in skeletal fluorosis in vitro.
Xiao-li LIU ; Jing SONG ; Ke-jian LIU ; Wen-peng WANG ; Chang XU ; Yu-zeng ZHANG ; Yun LIU
Journal of Huazhong University of Science and Technology (Medical Sciences) 2015;35(5):712-715
Skeletal fluorosis is a chronically metabolic bone disease with extensive hyperostosis osteosclerosis caused by long time exposure to fluoride. Skeletal fluorosis brings about a series of abnormal changes of the extremity, such as joint pain, joint stiffness, bone deformity, etc. Differentiation and maturation of osteoblasts were regulated by osteoclasts via Sema4D/Plexin-B1 signaling pathway. Furthermore, the differentiation and maturation of osteoclasts are conducted by osteoblasts via RANKL/RANK/OPG pathway. Both of these processes form a feedback circuit which is a key link in skeletal fluorosis. In this study, an osteoblast-osteoclast co-culture model in vitro was developed to illustrate the mechanism of skeletal fluorosis. With the increase of fluoride concentration, the expression level of Sema4D was decreased and TGF-β1 was increased continuously. OPG/RANKL mRNA level, however, increased gradually. On the basis of that, the inhibition of Sema4D/Plexin-B1/RhoA/ROCK signaling pathway caused by fluoride promoted the level of TGF-β1 and activated the proliferation of osteoblasts. In addition, osteroprotegerin (OPG) secreted by osteoblasts was up-regulated by fluoride. The competitive combination of OPG and RANKL was strengthened and the combination of RANKL and RANK was hindered. And then the differentiation and maturation of osteoclasts were inhibited, and bone absorption was weakened, leading to skeletal fluorosis.
Animals
;
Antigens, CD
;
genetics
;
metabolism
;
Cell Proliferation
;
drug effects
;
Feedback, Physiological
;
Fetus
;
Fluorides
;
pharmacology
;
GTPase-Activating Proteins
;
genetics
;
metabolism
;
Gene Expression Regulation, Developmental
;
Osteoblasts
;
drug effects
;
metabolism
;
pathology
;
Osteoclasts
;
drug effects
;
metabolism
;
pathology
;
Osteogenesis
;
drug effects
;
genetics
;
Osteoprotegerin
;
genetics
;
metabolism
;
RANK Ligand
;
genetics
;
metabolism
;
RNA, Messenger
;
genetics
;
metabolism
;
Rats
;
Receptor Activator of Nuclear Factor-kappa B
;
genetics
;
metabolism
;
Receptors, Cell Surface
;
genetics
;
metabolism
;
Semaphorins
;
genetics
;
metabolism
;
Signal Transduction
;
Transforming Growth Factor beta1
;
genetics
;
metabolism
;
rho-Associated Kinases
;
genetics
;
metabolism
;
rhoA GTP-Binding Protein
;
genetics
;
metabolism
3.Increased L-arginine Production by Site-directed Mutagenesis of N-acetyl-L-glutamate Kinase and proB Gene Deletion in Corynebacterium crenatum.
Bin ZHANG ; Fang WAN ; Yu Lou QIU ; Xue Lan CHEN ; Li TANG ; Jin Cong CHEN ; Yong Hua XIONG
Biomedical and Environmental Sciences 2015;28(12):864-874
OBJECTIVEIn Corynebacterium crenatum, the adjacent D311 and D312 of N-acetyl-L-glutamate kinase (NAGK), as a key rate-limiting enzyme of L-arginine biosynthesis under substrate regulatory control by arginine, were initially replaced with two arginine residues to investigate the L-arginine feedback inhibition for NAGK.
METHODSNAGK enzyme expression was evaluated using a plasmid-based method. Homologous recombination was employed to eliminate the proB.
RESULTSThe IC50 and enzyme activity of NAGK M4, in which the D311R and D312R amino acid substitutions were combined with the previously reported E19R and H26E substitutions, were 3.7-fold and 14.6% higher, respectively, than those of the wild-type NAGK. NAGK M4 was successfully introduced into the C. crenatum MT genome without any genetic markers; the L-arginine yield of C. crenatum MT-M4 was 26.2% higher than that of C. crenatum MT. To further improve upon the L-arginine yield, we constructed the mutant C. crenatum MT-M4 proB. The optimum concentration of L-proline was also investigated in order to determine its contribution to L-arginine yield. After L-proline was added to the medium at 10 mmol/L, the L-arginine yield reached 16.5 g/L after 108 h of shake-flask fermentation, approximately 70.1% higher than the yield attained using C. crenatum MT.
CONCLUSIONFeedback inhibition of L-arginine on NAGK in C. crenatum is clearly alleviated by the M4 mutation of NAGK, and deletion of the proB in C. crenatum from MT to M4 results in a significant increase in arginine production.
Animals ; Arginine ; biosynthesis ; Corynebacterium ; genetics ; metabolism ; Escherichia coli ; Feedback, Physiological ; Gene Deletion ; Mutagenesis, Site-Directed ; Phosphotransferases (Carboxyl Group Acceptor) ; genetics ; Proline ; metabolism
4.Kisspeptin signalling and its roles in humans.
Singapore medical journal 2015;56(12):649-656
Kisspeptins are a group of peptide fragments encoded by the KISS1 gene in humans. They bind to kisspeptin receptors with equal efficacy. Kisspeptins and their receptors are expressed by neurons in the arcuate and anteroventral periventricular nuclei of the hypothalamus. Oestrogen mediates negative feedback of gonadotrophin-releasing hormone secretion via the arcuate nucleus. Conversely, it exerts positive feedback via the anteroventral periventricular nucleus. The sexual dimorphism of these nuclei accounts for the differential behaviour of the hypothalamic-pituitary-gonadal axis between genders. Kisspeptins are essential for reproductive function. Puberty is regulated by the maturation of kisspeptin neurons and by interactions between kisspeptins and leptin. Hence, kisspeptins have potential diagnostic and therapeutic applications. Kisspeptin agonists may be used to localise lesions in cases of hypothalamic-pituitary-gonadal axis dysfunction and evaluate the gonadotrophic potential of subfertile individuals. Kisspeptin antagonists may be useful as contraceptives in women, through the prevention of premature luteinisation during in vitro fertilisation, and in the treatment of sex steroid-dependent diseases and metastatic cancers.
Animals
;
Arcuate Nucleus of Hypothalamus
;
metabolism
;
Estrogens
;
metabolism
;
Feedback, Physiological
;
Female
;
Fertilization in Vitro
;
Gonadotropin-Releasing Hormone
;
metabolism
;
Homeostasis
;
Humans
;
Kisspeptins
;
physiology
;
Male
;
Mice
;
Neoplasms
;
metabolism
;
Neurons
;
metabolism
;
Protein Binding
;
Rats
;
Reproduction
;
Sex Factors
;
Signal Transduction
5.Membrane-bound cytokine and feedforward regulation.
Ke-Fu WU ; Guo-Guang ZHENG ; Xiao-Tong MA ; Yu-Hua SONG
Journal of Experimental Hematology 2013;21(5):1091-1094
Feedback and feedforward widely exist in life system, both of them are the basic processes of control system. While the concept of feedback has been widely used in life science, feedforward regulation was systematically studied in neurophysiology, awaiting further evidence and mechanism in molecular biology and cell biology. The authors put forward a hypothesis about the feedforward regulation of membrane bound macrophage colony stimulation factor (mM-CSF) on the basis of their previous work. This hypothesis might provide a new direction for the study on the biological effects of mM-CSF on leukemia and solid tumors, and contribute to the study on other membrane bound cytokines.
Feedback, Physiological
;
Granulocyte-Macrophage Colony-Stimulating Factor
;
Humans
;
Leukemia
;
Systems Biology
6.A quantitative investigation of E2F1-regulated cell cycle compensation mechanism.
Journal of Southern Medical University 2013;33(6):870-873
OBJECTIVETo explore the core mechanism of cell cycle compensation using a mathematical model.
METHODSA set of ordinary differential equations were used to describe the interactions between the core cell cycle molecules. Continuous and cyclic changes of the concentrations of these molecules were computed to capture the discrete events of molecular interactions.
RESULTSThe calculated molecule concentrations and captured signaling events agreed with the experimental results.
CONCLUSIONE2F transcription factor 1 is the pivotal element linking the positive and negative feedbacks and regulating G1/S and G2/M phase compensation.
Animals ; Cell Cycle ; Drosophila ; cytology ; E2F1 Transcription Factor ; Feedback, Physiological ; Models, Theoretical
7.Acetyl salicylic acid inhibits Th17 airway inflammation via blockade of IL-6 and IL-17 positive feedback.
Hyung Geun MOON ; Chil Sung KANG ; Jun Pyo CHOI ; Dong Sic CHOI ; Hyun Il CHOI ; Yong Wook CHOI ; Seong Gyu JEON ; Joo Yeon YOO ; Myoung Ho JANG ; Yong Song GHO ; Yoon Keun KIM
Experimental & Molecular Medicine 2013;45(1):e5-
T-helper (Th)17 cell responses are important for the development of neutrophilic inflammatory disease. Recently, we found that acetyl salicylic acid (ASA) inhibited Th17 airway inflammation in an asthma mouse model induced by sensitization with lipopolysaccharide (LPS)-containing allergens. To investigate the mechanism(s) of the inhibitory effect of ASA on the development of Th17 airway inflammation, a neutrophilic asthma mouse model was generated by intranasal sensitization with LPS plus ovalbumin (OVA) and then challenged with OVA alone. Immunologic parameters and airway inflammation were evaluated 6 and 48 h after the last OVA challenge. ASA inhibited the production of interleukin (IL)-17 from lung T cells as well as in vitro Th17 polarization induced by IL-6. Additionally, ASA, but not salicylic acid, suppressed Th17 airway inflammation, which was associated with decreased expression of acetyl-STAT3 (downstream signaling of IL-6) in the lung. Moreover, the production of IL-6 from inflammatory cells, induced by IL-17, was abolished by treatment with ASA, whereas that induced by LPS was not. Altogether, ASA, likely via its acetyl moiety, inhibits Th17 airway inflammation by blockade of IL-6 and IL-17 positive feedback.
Animals
;
Aspirin/pharmacology/*therapeutic use
;
Cell Polarity/drug effects/immunology
;
Feedback, Physiological/*drug effects
;
Interferon-gamma/deficiency/metabolism
;
Interleukin-17/*metabolism/pharmacology
;
Interleukin-6/biosynthesis/*metabolism
;
Lipopolysaccharides/pharmacology
;
Lung/drug effects/metabolism/pathology
;
Mice
;
Mice, Inbred C57BL
;
Pneumonia/*drug therapy/*immunology/pathology
;
Th17 Cells/drug effects/*immunology/pathology
;
Transforming Growth Factor beta1/pharmacology
8.Computer simulation study on physiological feedback parameters during chest compression.
Guang ZHANG ; Jiewen ZHENG ; Peng ZHAO ; Yuxiao WANG ; Shaowen QIAN ; Hengzhi LU ; Taihu WU
Journal of Biomedical Engineering 2012;29(6):1032-1040
To have a thorough understanding of the CPR quality based on patients' various physiological states, the doctors must do something to simulate the chest compression physiological feedback parameters (CCPFP). The CCPFP simulation plays an important role in raising efficiency of CPR training and improving chest compression quality. In this study, the CCPFP, including cardiac output (CO), coronary perfusion pressure (CPP), partial pressure of End-tidal CO2 (PETCO2) and mean arterial relaxation pressure (MARP), was simulated using Charles F. Babbs' Model. Simulation results showed that the effect of compression depth upon CCPFP was important in the range of 2-6 cm, whereas compression rate had little effect on the CCPFP higher than 100/min; the thoracic factor is inversely proportional to the CCPFP with fixed compression depth and compression rate. The CCPFP simulation can be implemented at the various physiological statuses, and verified well with the animal experimental results and the clinical results.
Blood Pressure
;
physiology
;
Carbon Dioxide
;
blood
;
Cardiac Output
;
physiology
;
Chest Wall Oscillation
;
Computer Simulation
;
Feedback, Physiological
;
physiology
;
Humans
;
Models, Biological
;
Partial Pressure
9.Multifaceted functions of Siva-1: more than an Indian God of Destruction.
Protein & Cell 2012;3(2):117-122
Siva-1, as a p53-inducible gene, has been shown to induce extensive apoptosis in a number of different cell lines. Recent evidence suggests that Siva-1 functions as a part of the auto-regulatory feedback loop that restrains p53 through facilitating Mdm2-mediated p53 degradation. Also, Siva-1 plays an important role in suppressing tumor metastasis. Here we review the current understanding of Siva-1-mediated apoptotic signaling pathway. We also add comments on the p53-Siva-1 feedback loop, the novel function of Siva-1 in suppressing tumor metastasis, and their potential implications.
Apoptosis
;
Apoptosis Regulatory Proteins
;
metabolism
;
Feedback, Physiological
;
Humans
;
Models, Biological
;
Neoplasm Metastasis
;
Neoplasms
;
pathology
;
Proto-Oncogene Proteins c-mdm2
;
metabolism
;
Signal Transduction
;
Tumor Suppressor Protein p53
;
metabolism
10.Delaying vascular aging with Chinese medicine: implications from an overview of the p53 and miR-34s family.
Chinese journal of integrative medicine 2011;17(8):635-639
p53 is an important target for studying vascular aging. However, as people gradually learned more about the miR-34s and the relationship between miR-34s and p53, new research idea emerged. This paper tries to elaborate the feature of p53, microRNA and miR-34s in-depth, analyze the regulatory action of miR-34s on p53, and offer some new prevention and treatment prospects about vascular aging in Chinese medicine.
Blood Vessels
;
pathology
;
Cellular Senescence
;
Feedback, Physiological
;
Humans
;
Medicine, Chinese Traditional
;
MicroRNAs
;
metabolism
;
Tumor Suppressor Protein p53
;
metabolism

Result Analysis
Print
Save
E-mail