1.Close association between abnormal expressed enzymes of energy metabolism and diarrhea-predominant irritable bowel syndrome.
Chun-Yan ZHANG ; Xin YAO ; Gang SUN ; Yun-Sheng YANG
Chinese Medical Journal 2019;132(2):135-144
BACKGROUND:
Irritable bowel syndrome (IBS) is one of the most common functional intestinal diseases, but its pathogenesis is still unknown. The present study aimed to screen the differentially expressed proteins in the mucosa of colon between IBS with diarrhea (IBS-D) patients and the healthy controls.
METHODS:
Forty-two IBS-D patients meeting the Rome III diagnostic criteria and 40 control subjects from July 2007 to June 2009 in Chinese PLA General Hospital were enrolled in the present study. We examined the protein expression profiles in mucosa of colon corresponding to IBS-D patients (n = 5) and controls (n = 5) using 2-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS). Secondly, Western blot and immunohistochemical analysis were carried out to validate the screened proteins in 27 IBS-D patients and 27 controls. Thirdly, high-performance liquid chromatography (HPLC) was further carried out to determine ATP concentration in the mucosa of colon between 10 IBS-D patients and 8 controls. Comparisons between 2 groups were performed by Student's t-test or Mann-Whitney U-test.
RESULTS:
Twelve differentially expressed proteins were screened out. The α-enolase (ENOA) in the sigmoid colon (0.917 ± 0.007 vs. 1.310 ± 0.100, t = 2.643, P = 0.017) and caecum (0.765 ± 0.060 vs. 1.212 ± 0.122, t = 2.225, P = 0.023), Isobutyryl-CoA dehydrogenase (ACAD8) in the sigmoid colon (1.127 ± 0.201 vs. 1.497 ± 0.392, t = 7.093, P = 0.008) of the IBS-D group were significantly lower while acetyl-CoA acetyltransferase (CT) in the caecum (2.453 ± 0.422 vs. 0.931 ± 0.652, t = 8.363, P = 0.015) and ATP synthase subunit d (ATP5H) in the sigmoid (0.843 ± 0.042 vs. 0.631 ± 0.042, t = 8.613,P = 0.007) of the IBS-D group was significantly higher, compared with the controls. The ATP concentration in the mucosa of the sigmoid colon in IBS-D group was significantly lower than that of control group (0.470 [0.180, 1.360] vs. 5.350 [2.230, 7.900], U = 55, P < 0.001).
CONCLUSIONS
Many proteins related to energy metabolism presented differential expression patterns in the mucosa of colon of the IBS-D patients. The abnormalities in energy metabolism may be involved in the pathogenesis of IBS which deserves more studies to elucidate.
Adenosine Triphosphate
;
metabolism
;
Adult
;
Blotting, Western
;
Colon
;
metabolism
;
pathology
;
Diarrhea
;
enzymology
;
metabolism
;
pathology
;
Electrophoresis, Gel, Two-Dimensional
;
Energy Metabolism
;
genetics
;
physiology
;
Female
;
Humans
;
Immunohistochemistry
;
Intestinal Mucosa
;
enzymology
;
metabolism
;
pathology
;
Irritable Bowel Syndrome
;
enzymology
;
metabolism
;
pathology
;
Male
;
Mass Spectrometry
;
Middle Aged
;
Proteome
;
metabolism
2.Identification of interacting proteins with NF-κB in different status of uterine smooth muscle in labor.
Jing ZHANG ; Qiaoshu LIU ; Weishe ZHANG ; Qiaozhen PENG ; Xiao'e JIANG ; Texuan ZHU ; Xinhua WU
Journal of Central South University(Medical Sciences) 2016;41(10):1039-1046
To analyze the differentially expressed proteins which interacted with NF-kappaB in the uterine lower segment smooth muscle tissues under different status of labor onset, and to provide a new foundation on the mechanisms for labor onset.
Methods: NF-κB P65 protein expression in smooth muscle tissues from the term non-labor group, natural term labor group and drug-induced term labor group was analyzed by Western blot. Co-immunoprecipitation and SDS-PAGE (sodium dodecyl sulfate polyacrylamide gel electrophoresis) were performed to detect the proteins interacting with NF-κB p65 in the NF-κB p65 complexes. The components of the complex were identified by LC-ESI-MS/MS (liquid chromatography-tandem electrospray mass spectrometry) and database analysis. The identified differentially expressed proteins were confirmed by Western blot.
Results: Positive expression of NF-κB was detected in all of the three groups. 10 differentially expressed proteins were identified by LC-ESI-MS/MS in human lower segment myometrium tissues in the term non-labor group and natural term labor group, mean while, 5 differentially expressed proteins were identified in the term non-labor group and the drug-induced labor group. 3 differential expression proteins were detected in all of the 3 groups, including Heat shock 70, Annexin A6 and Desmin, which were verified by Western blot. These proteins were mainly involved in chaperone, signal transduction, cell structure, and energy metabolism process, respectively.
Conclusion: NF-κB expressed in uterine smooth muscle cells is involved in the process of initiation and regulation of labor onset through a number of proteins relevant to signal transduction, cell structure and energy metabolism.
Blotting, Western
;
Electrophoresis, Polyacrylamide Gel
;
Energy Metabolism
;
genetics
;
Female
;
Humans
;
Immunoprecipitation
;
Labor, Obstetric
;
genetics
;
Molecular Chaperones
;
genetics
;
Myocytes, Smooth Muscle
;
Myometrium
;
physiology
;
NF-kappa B
;
genetics
;
physiology
;
Pregnancy
;
Protein Interaction Mapping
;
Proteomics
;
Signal Transduction
;
genetics
;
Tandem Mass Spectrometry
;
Transcription Factor RelA
3.Essential role of mitochondria in tumorigenesis.
Chunling TANG ; Zhonghuai XIANG ; Hongjuan CUI
Chinese Journal of Biotechnology 2013;29(11):1548-1557
Tumorigenesis is a complex process that is regulated by a variety of network signals. With the continuous development of the process, tumor cells gradually exhibit lots of hallmarks.Tumor cells have the characteristics of unlimited proliferation, resistance to apoptosis, evading immune surveillance, among others. As a unique organelles, mitochondria play an important role in cellular energy metabolism, reactive oxygen species producing and apoptosis process. Particularly, mitochondria have a close relationship with tumor development. In this review, we focus on the essential role of mitochondria in tumor cells development.
Animals
;
Energy Metabolism
;
Humans
;
Mitochondria
;
metabolism
;
physiology
;
Neoplasms
;
etiology
;
genetics
;
physiopathology
;
Tumor Microenvironment
;
physiology
4.Neuroprotective role of silent information regulator 1 in Alzheimer's disease.
Xiao-Rong YANG ; Rui WANG ; Hua-Ping QIN ; Xin ZHAO ; Nai-Hong LIU ; Ce ZHANG
Acta Physiologica Sinica 2011;63(4):396-400
Silent information regulator 1 (SIRT1), an NAD(+)-dependent deacetylase, is involved in the regulation of gene transcription, energy metabolism and cell aging. Recent studies have showed that SIRT1 possesses neuroprotective effects, however, it is not very clear how SIRT1 exerts the neuroprotection in Alzheimer's disease (AD). In this review, we summarized the neuroprotective role of SIRT1 in AD and its possible molecular mechanisms, proposing a novel strategy for preventing and treating neurodegeneration.
Alzheimer Disease
;
genetics
;
physiopathology
;
Animals
;
Energy Metabolism
;
physiology
;
Humans
;
Neuroprotective Agents
;
Sirtuin 1
;
physiology
;
Transcription, Genetic
;
physiology
5.Expanding neurotransmitters in the hypothalamic neurocircuitry for energy balance regulation.
Protein & Cell 2011;2(10):800-813
The current epidemic of obesity and its associated metabolic syndromes impose unprecedented challenges to our society. Despite intensive research on obesity pathogenesis, an effective therapeutic strategy to treat and cure obesity is still lacking. Exciting studies in last decades have established the importance of the leptin neural pathway in the hypothalamus in the regulation of body weight homeostasis. Important hypothalamic neuropeptides have been identified as critical neurotransmitters from leptin-sensitive neurons to mediate leptin action. Recent research advance has significantly expanded the list of neurotransmitters involved in body weight-regulating neural pathways, including fast-acting neurotransmitters, gamma-aminobutyric acid (GABA) and glutamate. Given the limited knowledge on the leptin neural pathway for body weight homeostasis, understanding the function of neurotransmitters released from key neurons for energy balance regulation is essential for delineating leptin neural pathway and eventually for designing effective therapeutic drugs against the obesity epidemic.
Animals
;
Energy Metabolism
;
Gene Expression
;
Humans
;
Hunger
;
Hypothalamus
;
metabolism
;
physiology
;
Leptin
;
metabolism
;
physiology
;
Neural Pathways
;
metabolism
;
Neuropeptides
;
genetics
;
metabolism
;
Obesity
;
metabolism
6.Integrative Physiology: Defined Novel Metabolic Roles of Osteocalcin.
Yu Sik KIM ; Il Young PAIK ; Young Jun RHIE ; Sang Hoon SUH
Journal of Korean Medical Science 2010;25(7):985-991
The prevailing model of osteology is that bones constantly undergo a remodeling process, and that the differentiation and functions of osteoblasts are partially regulated by leptin through different central hypothalamic pathways. The finding that bone remodeling is regulated by leptin suggested possible endocrinal effects of bones on energy metabolism. Recently, a reciprocal relationship between bones and energy metabolism was determined whereby leptin influences osteoblast functions and, in turn, the osteoblast-derived protein osteocalcin influences energy metabolism. The metabolic effects of bones are caused by the release of osteocalcin into the circulation in an uncarboxylated form due to incomplete gamma-carboxylation. In this regard, the Esp gene encoding osteotesticular protein tyrosine phosphatase is particularly interesting because it may regulate gamma-carboxylation of osteocalcin. Novel metabolic roles of osteocalcin have been identified, including increased insulin secretion and sensitivity, increased energy expenditure, fat mass reduction, and mitochondrial proliferation and functional enhancement. To date, only a positive correlation between osteocalcin and energy metabolism in humans has been detected, leaving causal effects unresolved. Further research topics include: identification of the osteocalcin receptor; the nature of osteocalcin regulation in other pathways regulating metabolism; crosstalk between nutrition, osteocalcin, and energy metabolism; and potential applications in the treatment of metabolic diseases.
Bone Remodeling/physiology
;
Bone and Bones/*metabolism
;
*Energy Metabolism
;
Humans
;
Leptin/metabolism
;
Osteocalcin/genetics/*metabolism
7.Establishment and application of a high-throughput screening assay for premature activation of HIV-1 precursors.
Quan ZHANG ; Xiao-yu LI ; Zhen-long LIU ; Ping-ping JIA ; Xiao-lu WEI ; Li-xun ZHAO ; Jian-dong JIANG ; Shan CEN
Acta Pharmaceutica Sinica 2010;45(2):247-252
Strict regulation of HIV-1 PR function is critical for efficient production of mature viral particles. During viral protein expression and viral assembly, HIV-1 PR located within Gag-Pol precursor must be inactive to prevent premature cytoplasmic processing of the viral Gag and Gag-Pol precursors. Premature activation of HIV-1 precursors leads to major defects in viral assembly and production of viral particles. A cell-level premature activation of HIV-1 precursors assay using bioluminescence resonance energy transfer (BRET) was established. Three thousand compounds were screened to evaluate this assay. The results showed that the assay is sensitive, specific and stable (Z' factor is 0.905).
Anti-HIV Agents
;
pharmacology
;
Benzoxazines
;
pharmacology
;
Bioluminescence Resonance Energy Transfer Techniques
;
methods
;
Fusion Proteins, gag-pol
;
genetics
;
metabolism
;
HEK293 Cells
;
HIV Protease
;
metabolism
;
physiology
;
HIV-1
;
enzymology
;
High-Throughput Screening Assays
;
methods
;
Humans
;
Plasmids
;
genetics
;
Protein Precursors
;
metabolism
;
physiology
;
Pyridazines
;
pharmacology
;
Transfection
;
Virion
;
growth & development
;
Virus Assembly
;
gag Gene Products, Human Immunodeficiency Virus
;
genetics
;
metabolism
8.Perspective beyond Cancer Genomics: Bioenergetics of Cancer Stem Cells.
Hideshi ISHII ; Yuichiro DOKI ; Masaki MORI
Yonsei Medical Journal 2010;51(5):617-621
Although the notion that cancer is a disease caused by genetic and epigenetic alterations is now widely accepted, perhaps more emphasis has been given to the fact that cancer is a genetic disease. It should be noted that in the post-genome sequencing project period of the 21st century, the underlined phenomenon nevertheless could not be discarded towards the complete control of cancer disaster as the whole strategy, and in depth investigation of the factors associated with tumorigenesis is required for achieving it. Otto Warburg has won a Nobel Prize in 1931 for the discovery of tumor bioenergetics, which is now commonly used as the basis of positron emission tomography (PET), a highly sensitive noninvasive technique used in cancer diagnosis. Furthermore, the importance of the cancer stem cell (CSC) hypothesis in therapy-related resistance and metastasis has been recognized during the past 2 decades. Accumulating evidence suggests that tumor bioenergetics plays a critical role in CSC regulation; this finding has opened up a new era of cancer medicine, which goes beyond cancer genomics.
Animals
;
*Energy Metabolism/genetics/physiology
;
*Genomics
;
Humans
;
Neoplasms/genetics/*metabolism
;
Neoplastic Stem Cells/*metabolism
9.Competition between TRAF2 and TRAF6 regulates NF-kappaB activation in human B lymphocytes.
Wen ZHANG ; Xuan ZHANG ; Xiao-Li WU ; Liu-Sheng HE ; Xiao-Feng ZENG ; Amrie C CRAMMER ; Peter E LIPSKY
Chinese Medical Sciences Journal 2010;25(1):1-12
OBJECTIVETo investigate the role of TNF receptor-associated factor 2 (TRAF-2) and TRAF6 in CD40-induced nuclear factor-kappaB (NF-kappaB) signaling pathway and whether CD40 signaling requires TRAF2.
METHODSHuman B cell lines were transfected with plasmids expressing wild type TRAF2 or dominant negative TRAF2, TRAF2-shRNA, or TRAF6-shRNA. The activation of NF-kappaB was detected by Western blot, kinase assay, transfactor enzyme-linked immunosorbent assay (ELISA), and fluorescence resonance energy transfer (FRET). Analysis of the role of TRAF-2 and TRAF-6 in CD40-mediated NF-kappaB activity was examined following stimulation with recombinant CD154.
RESULTSTRAF2 induced activity of IkappaB-kinases (IKKalpha, IKKi/epsilon), phosphorylation of IkappaBalpha, as well as nuclear translocation and phosphorylation of p65/RelA. In contrast, TRAF6 strongly induced NF-kappaB activation and nuclear translocation of p65 as well as p50 and c-Rel. Engagement of CD154-induced nuclear translocation of p65 was inhibited by a TRAF6-shRNA, but conversely was enhanced by a TRAF2-shRNA. Examination of direct interactions between CD40 and TRAFs by FRET documented that both TRAF2 and TRAF6 directly interacted with CD40. However, the two TRAFs competed for CD40 binding.
CONCLUSIONSThese results indicate that TRAF2 can signal in human B cells, but it is not essential for CD40-mediated NF-kappaB activation. Moreover, TRAF2 can compete with TRAF6 for CD40 binding, and thereby limit the capacity of CD40 engagement to induce NF-kappaB activation.
Animals ; B-Lymphocytes ; cytology ; physiology ; CD40 Antigens ; metabolism ; Cell Line ; Extracellular Signal-Regulated MAP Kinases ; metabolism ; Fluorescence Resonance Energy Transfer ; Humans ; I-kappa B Kinase ; metabolism ; NF-kappa B ; genetics ; metabolism ; Proto-Oncogene Proteins c-fos ; metabolism ; Signal Transduction ; physiology ; TNF Receptor-Associated Factor 2 ; genetics ; metabolism ; TNF Receptor-Associated Factor 6 ; genetics ; metabolism ; Transcription Factor RelA ; metabolism ; p38 Mitogen-Activated Protein Kinases ; metabolism
10.Effects of cold stress on energy metabolism in the chicken.
Jin-tao WANG ; Xiao-jun ZHANG ; Shi-wen XU
Chinese Journal of Applied Physiology 2009;25(2):172-176
AIMTo investigate the effect of cold stress on the energy metabolism in Yisha chickens.
METHODSMale Yisha chickens were subjected to acute (0.25, 1, 3, 6, 12 and 24 h) and chronic (5, 10 and 20 d) cold stress (12 +/- 1 degrees C). This study detected uncoupling protein (UCP) mRNA levels in gastrocnemius, glucagons (GLU) content in blood plasma and insulin (INS), blood glucose (BG) and free fatty acid (FFA) content in serum in the chicken.
RESULTSThe results were as follow: with the time lapsing during acute cold stress, UCP mRNA levels gradually increased, the content of INS and FFA showed fluctuant change, GLU content gradually increased, and BG content first increased and then decreased. During chronic cold stress, UCP mRNA levels significantly increased compared with their control group at every stress time point, and the content of INS, GLU, BG and FFA were all gradually increased with the time lapsing.
CONCLUSIONCold stress could change the energy metabolism in chickens. And the different extent cold stress would produce different effects on the energy metabolism.
Animals ; Chickens ; Cold Temperature ; Energy Metabolism ; physiology ; Fatty Acids, Nonesterified ; blood ; Insulin ; blood ; Ion Channels ; genetics ; metabolism ; Male ; Mitochondrial Proteins ; genetics ; metabolism ; RNA, Messenger ; genetics ; metabolism ; Stress, Physiological ; physiology ; Uncoupling Protein 1

Result Analysis
Print
Save
E-mail