1.Mesenchymal stem cell therapy for acute respiratory distress syndrome: from basic to clinics.
Protein & Cell 2020;11(10):707-722
		                        		
		                        			
		                        			The 2019 novel coronavirus disease (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has occurred in China and around the world. SARS-CoV-2-infected patients with severe pneumonia rapidly develop acute respiratory distress syndrome (ARDS) and die of multiple organ failure. Despite advances in supportive care approaches, ARDS is still associated with high mortality and morbidity. Mesenchymal stem cell (MSC)-based therapy may be an potential alternative strategy for treating ARDS by targeting the various pathophysiological events of ARDS. By releasing a variety of paracrine factors and extracellular vesicles, MSC can exert anti-inflammatory, anti-apoptotic, anti-microbial, and pro-angiogenic effects, promote bacterial and alveolar fluid clearance, disrupt the pulmonary endothelial and epithelial cell damage, eventually avoiding the lung and distal organ injuries to rescue patients with ARDS. An increasing number of experimental animal studies and early clinical studies verify the safety and efficacy of MSC therapy in ARDS. Since low cell engraftment and survival in lung limit MSC therapeutic potentials, several strategies have been developed to enhance their engraftment in the lung and their intrinsic, therapeutic properties. Here, we provide a comprehensive review of the mechanisms and optimization of MSC therapy in ARDS and highlighted the potentials and possible barriers of MSC therapy for COVID-19 patients with ARDS.
		                        		
		                        		
		                        		
		                        			Adoptive Transfer
		                        			;
		                        		
		                        			Alveolar Epithelial Cells
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Apoptosis
		                        			;
		                        		
		                        			Betacoronavirus
		                        			;
		                        		
		                        			Body Fluids
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			CD4-Positive T-Lymphocytes
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Clinical Trials as Topic
		                        			;
		                        		
		                        			Coinfection
		                        			;
		                        		
		                        			prevention & control
		                        			;
		                        		
		                        			therapy
		                        			;
		                        		
		                        			Coronavirus Infections
		                        			;
		                        		
		                        			complications
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Disease Models, Animal
		                        			;
		                        		
		                        			Endothelial Cells
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			Extracorporeal Membrane Oxygenation
		                        			;
		                        		
		                        			Genetic Therapy
		                        			;
		                        		
		                        			methods
		                        			;
		                        		
		                        			Genetic Vectors
		                        			;
		                        		
		                        			administration & dosage
		                        			;
		                        		
		                        			therapeutic use
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Immunity, Innate
		                        			;
		                        		
		                        			Inflammation Mediators
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Lung
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			physiopathology
		                        			;
		                        		
		                        			Mesenchymal Stem Cell Transplantation
		                        			;
		                        		
		                        			methods
		                        			;
		                        		
		                        			Mesenchymal Stem Cells
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Multiple Organ Failure
		                        			;
		                        		
		                        			etiology
		                        			;
		                        		
		                        			prevention & control
		                        			;
		                        		
		                        			Pandemics
		                        			;
		                        		
		                        			Pneumonia, Viral
		                        			;
		                        		
		                        			complications
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Respiratory Distress Syndrome, Adult
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			therapy
		                        			;
		                        		
		                        			Translational Medical Research
		                        			
		                        		
		                        	
2.Effects of Porphyromnonas gingivalis lipopolysaccharide on the expression of RANTES and fractalkine in human urnbilical vein endothelial cells.
Xiaoling QI ; Lei ZHAO ; Shanshan CHEN ; Shu MENG ; Yafei WU
West China Journal of Stomatology 2016;34(2):194-199
OBJECTIVEA study was conducted to investigate the effects of Porphyromonas gingivalis lipopolysaccharide (Pg-LPS) on the expression of regulated upon activation normal T-cell expressed and secreted (RANTES) and fractalkine in human umbilical vein endothelial cells (HUVECs).
METHODSHUVECs were incubated with different concentrations of Pg-LPS (200, 500, and 1000 ng x mL(-1)) for 1, 6, 12, and 24 h, respectively. Then real time quantitative polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent method (ELISA) were adopted to detect the protein levels and mRNA levels of RANTES and fractalkine.
RESULTSThe RANTES protein levels and mRNA levels, as well as fractalkine mRNA levels, were significantly higher in all experimental groups of 1, 6, and 12 h than in the control group (P<0.05), except the expression of RANTES mRNA in 200 ng x mL(-1) group of 12 h and RANTES protein in 200 ng x mL(-1) group of 1 h. The expression levels of RANTES mRNA and fractalkine mRNA were highest in 1000 ng x mL(-1) group of 6 h and were 4.88- and 6.20-fold higher, respectively, than those in the control group. The expression levels of RANTES protein, mRNA, and fractalkine mRNA decreased 6 h after stimulation, and were significantly higher than those in the control group (P<0.05) in the RANTES and fractalkine in HUVEC, and such expression is important in the development of atherosclerosis 500 ng x mL(-1) group of 24 h. There was a significant difference between the expression of fractalkine mRNA in 1000 ng x mL(-1) group of 6 and 12 h than in the control group (P<0.05).
CONCLUSIONPg-LPS infection might up-regulate the expression of RANTES and fractalkine in HUVEC, and such expression is important in the development of atherosclerosis.
Atherosclerosis ; Cells, Cultured ; Chemokine CCL5 ; genetics ; metabolism ; Chemokine CX3CL1 ; analysis ; genetics ; metabolism ; Enzyme-Linked Immunosorbent Assay ; Human Umbilical Vein Endothelial Cells ; metabolism ; Humans ; Lipopolysaccharides ; pharmacology ; Porphyromonas gingivalis ; immunology ; isolation & purification ; RNA, Messenger ; analysis ; Reverse Transcriptase Polymerase Chain Reaction ; Up-Regulation
3.Galpha12 Protects Vascular Endothelial Cells from Serum Withdrawal-Induced Apoptosis through Regulation of miR-155.
Hyeon Jeong LEE ; Eun Jig LEE ; Miran SEO
Yonsei Medical Journal 2016;57(1):247-253
		                        		
		                        			
		                        			PURPOSE: Apoptosis of vascular endothelial cells is a type of endothelial damage that is associated with the pathogenesis of cardiovascular diseases such as atherosclerosis. Heterotrimeric GTP-binding proteins (G proteins), including the alpha 12 subunit of G protein (Galpha12), have been found to modulate cellular proliferation, differentiation, and apoptosis of numerous cell types. However, the role of Galpha12 in the regulation of apoptosis of vascular cells has not been elucidated. We investigated the role of Galpha12 in serum withdrawal-induced apoptosis of human umbilical vein endothelial cells (HUVECs) and its underlying mechanisms. MATERIALS AND METHODS: HUVECs were transfected with Galpha12 small-interfering RNA (siRNA) to knockdown the endogenous Galpha12 expression and were serum-deprived for 6 h to induce apoptosis. The apoptosis of HUVECs were assessed by Western blotting and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. The expressions of microRNAs were analyzed by quantitative real-time PCR. RESULTS: Knockdown of Galpha12 with siRNA augmented the serum withdrawal-induced apoptosis of HUVECs and markedly repressed the expression of microRNA-155 (miR-155). Serum withdrawal-induced apoptosis of HUVECs was inhibited by the overexpression of miR-155 and increased significantly due to the inhibition of miR-155. Notably, the elevation of miR-155 expression prevented increased apoptosis of Galpha12-deficient HUVECs. CONCLUSION: From these results, we conclude that Galpha12 protects HUVECs from serum withdrawal-induced apoptosis by retaining miR-155 expression. This suggests that Galpha12 might play a protective role in vascular endothelial cells by regulating the expression of microRNAs.
		                        		
		                        		
		                        		
		                        			*Apoptosis
		                        			;
		                        		
		                        			Atherosclerosis/*blood/genetics/immunology
		                        			;
		                        		
		                        			Cell Proliferation
		                        			;
		                        		
		                        			Endothelial Cells/*metabolism
		                        			;
		                        		
		                        			GTP-Binding Protein alpha Subunits, G12-G13/*genetics
		                        			;
		                        		
		                        			Gene Expression Profiling
		                        			;
		                        		
		                        			Gene Expression Regulation
		                        			;
		                        		
		                        			Human Umbilical Vein Endothelial Cells/cytology
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			MicroRNAs/*metabolism
		                        			;
		                        		
		                        			Protective Agents
		                        			;
		                        		
		                        			*RNA, Small Interfering
		                        			;
		                        		
		                        			Real-Time Polymerase Chain Reaction
		                        			;
		                        		
		                        			*Transfection
		                        			
		                        		
		                        	
4.Interleukin-33 and Mast Cells Bridge Innate and Adaptive Immunity: From the Allergologist's Perspective.
Tae Young JANG ; Young Hyo KIM
International Neurourology Journal 2015;19(3):142-150
		                        		
		                        			
		                        			Interleukin (IL) 33, a member of the IL-1 superfamily, is an "alarmin" protein and is secreted in its active form from damaged cells undergoing necrotic cell death. Mast cells are one of the main effector cell types in allergic disorders. They secrete a variety of mediators, including T helper 2 cytokines. As mast cells have high-affinity IgE receptors (FcepsilonRI) on their surface, they can capture circulating IgE. IgE-bound mast cells degranulate large amounts of histamine, heparin, and proteases when they encounter antigens. As IL-33 is an important mediator of innate immunity and mast cells play an important role in adaptive immune responses, interactions between the two could link innate and adaptive immunity. IL-33 promotes the adhesion of mast cells to laminin, fibronectin, and vitronectin. IL-33 increases the expression of adhesion molecules, such as intracellular adhesion molecule-1 and vascular cell adhesion molecule-1, in endothelial cells, thus enhancing mast cell adhesion to blood vessel walls. IL-33 stimulates mast cell proliferation by activating the ST2/Myd88 pathway; increases mast cell survival by the activation of survival proteins such as Bcl-XL; and promotes the growth, development, and maturation of mast cell progenitors. IL-33 is also involved in the activation of mature mast cells and production of different proinflammatory cytokines. The interaction of IL-33 and mast cells could have important clinical implications in the field of clinical urology. Epithelial dysfunction and mast cells could play an important role in the pathogenesis of interstitial cystitis. Urinary levels of IL-33 significantly increase in patients with interstitial cystitis. In addition, the number of mast cells significantly increase in the urinary bladders of patients with interstitial cystitis. Therefore, inhibition of mast cell activation and degranulation in response to increase in IL-33 is a potential therapeutic target in the treatment of interstitial cystitis.
		                        		
		                        		
		                        		
		                        			Adaptive Immunity*
		                        			;
		                        		
		                        			Allergy and Immunology
		                        			;
		                        		
		                        			Blood Vessels
		                        			;
		                        		
		                        			Cell Death
		                        			;
		                        		
		                        			Cystitis, Interstitial
		                        			;
		                        		
		                        			Cytokines
		                        			;
		                        		
		                        			Endothelial Cells
		                        			;
		                        		
		                        			Fibronectins
		                        			;
		                        		
		                        			Heparin
		                        			;
		                        		
		                        			Histamine
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Immunity, Innate
		                        			;
		                        		
		                        			Immunoglobulin E
		                        			;
		                        		
		                        			Interleukin-1
		                        			;
		                        		
		                        			Interleukins
		                        			;
		                        		
		                        			Laminin
		                        			;
		                        		
		                        			Mast Cells*
		                        			;
		                        		
		                        			Peptide Hydrolases
		                        			;
		                        		
		                        			Receptors, IgE
		                        			;
		                        		
		                        			Urinary Bladder
		                        			;
		                        		
		                        			Urology
		                        			;
		                        		
		                        			Vascular Cell Adhesion Molecule-1
		                        			;
		                        		
		                        			Vitronectin
		                        			
		                        		
		                        	
5.Honokiol ameliorates endothelial dysfunction through suppression of PTX3 expression, a key mediator of IKK/IkappaB/NF-kappaB, in atherosclerotic cell model.
Ling QIU ; Rong XU ; Siyang WANG ; Shuijun LI ; Hongguang SHENG ; Jiaxi WU ; Yi QU
Experimental & Molecular Medicine 2015;47(7):e171-
		                        		
		                        			
		                        			Pentraxin 3 (PTX3) was identified as a marker of the inflammatory response and overexpressed in various tissues and cells related to cardiovascular disease. Honokiol, an active component isolated from the Chinese medicinal herb Magnolia officinalis, was shown to have a variety of pharmacological activities. In the present study, we aimed to investigate the effects of honokiol on palmitic acid (PA)-induced dysfunction of human umbilical vein endothelial cells (HUVECs) and to elucidate potential regulatory mechanisms in this atherosclerotic cell model. Our results showed that PA significantly accelerated the expression of PTX3 in HUVECs through the IkappaB kinase (IKK)/IkappaB/nuclear factor-kappaB (NF-kappaB) pathway, reduced cell viability, induced cell apoptosis and triggered the inflammatory response. Knockdown of PTX3 supported cell growth and prevented apoptosis by blocking PA-inducted nitric oxide (NO) overproduction. Honokiol significantly suppressed the overexpression of PTX3 in PA-inducted HUVECs by inhibiting IkappaB phosphorylation and the expression of two NF-kappaB subunits (p50 and p65) in the IKK/IkappaB/NF-kappaB signaling pathway. Furthermore, honokiol reduced endothelial cell injury and apoptosis by regulating the expression of inducible NO synthase and endothelial NO synthase, as well as the generation of NO. Honokiol showed an anti-inflammatory effect in PA-inducted HUVECs by significantly inhibiting the generation of interleukin-6 (IL-6), IL-8 and monocyte chemoattractant protein-1. In summary, honokiol repaired endothelial dysfunction by suppressing PTX3 overexpression in an atherosclerotic cell model. PTX3 may be a potential therapeutic target for atherosclerosis.
		                        		
		                        		
		                        		
		                        			Apoptosis/drug effects
		                        			;
		                        		
		                        			Atherosclerosis/chemically induced/*drug therapy/immunology/pathology
		                        			;
		                        		
		                        			Biphenyl Compounds/chemistry/isolation & purification/*pharmacology
		                        			;
		                        		
		                        			C-Reactive Protein/*genetics/immunology
		                        			;
		                        		
		                        			Down-Regulation/drug effects
		                        			;
		                        		
		                        			Drugs, Chinese Herbal/chemistry/isolation & purification/*pharmacology
		                        			;
		                        		
		                        			Human Umbilical Vein Endothelial Cells
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			I-kappa B Kinase/*immunology
		                        			;
		                        		
		                        			Lignans/chemistry/isolation & purification/*pharmacology
		                        			;
		                        		
		                        			Magnolia/chemistry
		                        			;
		                        		
		                        			Palmitic Acid
		                        			;
		                        		
		                        			Protein-Serine-Threonine Kinases/*immunology
		                        			;
		                        		
		                        			Serum Amyloid P-Component/*genetics/immunology
		                        			;
		                        		
		                        			Signal Transduction/drug effects
		                        			
		                        		
		                        	
6.Angiogenic factors are associated with development of acute graft-versus-host disease after allogeneic hematopoietic stem cell transplantation.
Di-min NIE ; Qiu-ling WU ; Xia-xia ZHU ; Ran ZHANG ; Peng ZHENG ; Jun FANG ; Yong YOU ; Zhao-dong ZHONG ; Ling-hui XIA ; Mei HONG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2015;35(5):694-699
		                        		
		                        			
		                        			Acute graft-versus-host disease (aGVHD) is a serious complication after allogeneic hematopoietic stem cell transplantation (allo-HSCT). However, the mechanisms of aGVHD are not well understood. We aim to investigate the roles of the three angiogenic factors: angiopoietin-1 (Ang-1), Ang-2 and vascular endothelial growth factor (VEGF) in the development of aGVHD. Twenty-one patients who underwent allo-HSCT were included in our study. The dynamic changes of Ang-1, Ang-2 and VEGF were monitored in patients before and after allo-HSCT. In vitro, endothelial cells (ECs) were treated with TNF-β in the presence or absence of Ang-1, and then the Ang-2 level in the cell culture medium and the tubule formation by ECs were evaluated. After allo-HSCT, Ang-1, Ang-2 and VEGF all exhibited significant variation, suggesting these factors might be involved in the endothelial damage in transplantation. Patients with aGVHD had lower Ang-1 level at day 7 but higher Ang-2 level at day 21 than those without aGVHD, implying that Ang-1 may play a protective role in early phase yet Ang-2 is a promotion factor to aGVHD. In vitro, TNF-β promoted the release of Ang-2 by ECs and impaired tubule formation of ECs, which were both weakened by Ang-1, suggesting that Ang-1 may play a protective role in aGVHD by influencing the secretion of Ang-2, consistent with our in vivo tests. It is concluded that monitoring changes of these factors following allo-HSCT might help to identify patients at a high risk for aGVHD.
		                        		
		                        		
		                        		
		                        			Acute Disease
		                        			;
		                        		
		                        			Adolescent
		                        			;
		                        		
		                        			Adult
		                        			;
		                        		
		                        			Angiogenesis Inducing Agents
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Angiopoietin-1
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Angiopoietin-2
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Antineoplastic Agents
		                        			;
		                        		
		                        			therapeutic use
		                        			;
		                        		
		                        			Female
		                        			;
		                        		
		                        			Gene Expression Regulation, Neoplastic
		                        			;
		                        		
		                        			Graft vs Host Disease
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			Hematopoietic Stem Cell Transplantation
		                        			;
		                        		
		                        			Human Umbilical Vein Endothelial Cells
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Leukemia, Myeloid
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			therapy
		                        			;
		                        		
		                        			Lymphoma, Non-Hodgkin
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			therapy
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Precursor Cell Lymphoblastic Leukemia-Lymphoma
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			therapy
		                        			;
		                        		
		                        			Retrospective Studies
		                        			;
		                        		
		                        			Signal Transduction
		                        			;
		                        		
		                        			Transplantation, Homologous
		                        			;
		                        		
		                        			Tumor Necrosis Factor-alpha
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Vascular Endothelial Growth Factor A
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			immunology
		                        			
		                        		
		                        	
7.Role of CD44 in monocyte transmigration across Cryptococcus neoformans-infected blood-brain barrier in vitro.
Li-Ke ZHANG ; Jia-Wen QIU ; Xiao-Lu LIANG ; Bao-Yi HUANG ; Yan LI ; Lei DU ; Min LONG ; Jun LUO ; Sheng-He HUANG ; Hong CAO
Journal of Southern Medical University 2015;35(4):468-473
OBJECTIVETo explore the role of CD44 in monocyte adhesion to human brain microvascular endothelial cells (HBMECs) and monocyte migration across an in vitro model of blood-brain barrier (BBB) infected by Cryptococcus neoformans (Cn).
METHODSAn in vitro blood-brain barrier model was constructed using a transwell chamber covered with a HBMEC monolayer. The wild-type strain of Cn B4500FO2, TYCC645#32 strain with CPS1 gene deletion and PCIP strain with CPS1 complementation were chosen to infect the monolayer HBMECs. THP-1 cells were added to the upper chamber of transwell, and the relative migration rate was determined by counting the number of the cells entering the lower chambers. The inhibitory effects of anti-CD44 monoclonal antibody and the CD44 inhibitor bikunin were examined on THP-1 binding to and migration across HBMECs.
RESULTSCn infection of the HBMECs caused markedly enhanced THP-1 cell adhesion and migration across the monolyers (P<0.01) dependent on Cn concentration and exposure time. Addition of anti-CD44 monoclonal antibody and bikunin significantly lowered THP-1 adhesion and migration rates in the BBB model with Cn-infected HBMECs (P<0.01) with a dose dependence of the antibody (within 0-1 µg) and inhibitor (within 0-20 nmol/L). Both THP-1 adhesion rate and migration rate were lowered in the BBB model infected with CPS1 gene-deleted Cn but increased in the model infected with the complemented strain compared with those in the wild-type strain-infected model.
CONCLUSIONIn the in vitro BBB model, CD44 expressed on HBMECs may play an essential role in monocyte adhesion to and migration across the BBB. The capsular hyaluronic acid may mediate Cn-induced monocyte adhesion and migration.
Blood-Brain Barrier ; immunology ; microbiology ; Brain ; cytology ; microbiology ; Cell Line ; Cryptococcosis ; immunology ; Cryptococcus neoformans ; Endothelial Cells ; microbiology ; Humans ; Hyaluronan Receptors ; metabolism ; Monocytes ; cytology
8.Carbon Monoxide Releasing Molecule Accelerates Reendothelialization after Carotid Artery Balloon Injury in Rat.
Qing Song HU ; Yang Xin CHEN ; Qing Sheng HUANG ; Bing Qing DENG ; Shuang Lun XIE ; Jing Feng WANG ; Ru Qiong NIE
Biomedical and Environmental Sciences 2015;28(4):253-262
OBJECTIVEThis study was aimed to investigate the effects of carbon monoxide releasing molecule (CORM-2), a novel carbon monoxide carrier, on the reendothelialization of carotid artery in rat endothelial denudation model.
METHODSMale rats subjected to carotid artery balloon injury were treated with CORM-2, inactive CORM-2 (iCORM-2) or dimethyl sulfoxide (DMSO). The reendothelialization capacity was evaluated by Evans Blue dye and the immunostaining with anti-CD31 antibody. The number of circulating endothelial progenitor cells (EPCs) was detected by flow cytometry. The proliferation, migration, and adhesion of human umbilical vein endothelial cells (HUVECs) were assessed by using [3H]thymidine, Boyden chamber and human fibronectin respectively. The expressions of protein were detected by using western blot analysis.
RESULTSCORM-2 remarkably accelerated the re-endothelialization 5 d later and inhibited neointima formation 28 d later. In addition, the number of peripheral EPCs significantly increased in CORM-2-treated rats than that in iCORM-2 or DMSO-treated rats after 5 d later. In vitro experiments, CORM-2 significantly enhanced the proliferation, migration and adhesion of HUVECs. The levels of Akt, eNOS phosphorylation, and NO generation in HUVECs were also much higher in CORM-2 treated group. Blocking of PI3K/Akt/eNOS signaling pathway markedly suppressed the enhanced migration and adhesion of HUVECs induced by CORM-2.
CONCLUSIONCORM-2 could promote endothelial repair, and inhibit neointima formation after carotid artery balloon injury, which might be associated with the function changes of HUVECs regulated by PI3K/Akt/eNOS pathway.
Animals ; Carbon Monoxide ; metabolism ; pharmacology ; Carotid Artery Injuries ; drug therapy ; immunology ; metabolism ; pathology ; Carotid Artery, Common ; drug effects ; immunology ; metabolism ; pathology ; Cell Adhesion ; drug effects ; Disease Models, Animal ; Endothelial Cells ; drug effects ; immunology ; metabolism ; pathology ; Endothelium, Vascular ; drug effects ; metabolism ; pathology ; Humans ; Male ; Rats ; Rats, Sprague-Dawley
9.Nuclear Molecular Imaging for Vulnerable Atherosclerotic Plaques.
Korean Journal of Radiology 2015;16(5):955-966
		                        		
		                        			
		                        			Atherosclerosis is an inflammatory disease as well as a lipid disorder. Atherosclerotic plaque formed in vessel walls may cause ischemia, and the rupture of vulnerable plaque may result in fatal events, like myocardial infarction or stroke. Because morphological imaging has limitations in diagnosing vulnerable plaque, molecular imaging has been developed, in particular, the use of nuclear imaging probes. Molecular imaging targets various aspects of vulnerable plaque, such as inflammatory cell accumulation, endothelial activation, proteolysis, neoangiogenesis, hypoxia, apoptosis, and calcification. Many preclinical and clinical studies have been conducted with various imaging probes and some of them have exhibited promising results. Despite some limitations in imaging technology, molecular imaging is expected to be used both in the research and clinical fields as imaging instruments become more advanced.
		                        		
		                        		
		                        		
		                        			Atherosclerosis/*diagnosis/pathology/radiography
		                        			;
		                        		
		                        			Endothelial Cells/metabolism
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Inflammation/pathology
		                        			;
		                        		
		                        			Lipoproteins, LDL/metabolism
		                        			;
		                        		
		                        			Macrophages/immunology/metabolism
		                        			;
		                        		
		                        			Plaque, Atherosclerotic
		                        			;
		                        		
		                        			Positron-Emission Tomography
		                        			;
		                        		
		                        			Tomography, Emission-Computed, Single-Photon
		                        			
		                        		
		                        	
10.(Lymph)angiogenic influences on hematopoietic cells in acute myeloid leukemia.
Experimental & Molecular Medicine 2014;46(11):e122-
		                        		
		                        			
		                        			The purpose of this review is to provide an overview of the effect of (lymph)angiogenic cytokines on hematopoietic cells involved in acute myeloid leukemia (AML). Like angiogenesis, lymphangiogenesis occurs in pathophysiological conditions but not in healthy adults. AML is closely associated with the vasculature system, and the interplay between lymphangiogenic cytokines maintains leukemic blast survival in the bone marrow (BM). Once AML is induced, proangiogenic cytokines function as angiogenic or lymphangiogenic factors and affect hematopoietic cells, including BM-derived immune cells. Simultaneously, the representative cytokines, VEGFs and their receptors are expressed on AML blasts in vascular and osteoblast niches in both the BM and the peripheral circulation. After exposure to (lymph)angiogenic cytokines in leukemogenesis and infiltration, immune cell phenotypes and functions are affected. These dynamic behaviors in the BM reflect the clinical features of AML. In this review, we note the importance of lymphangiogenic factors and their receptors in hematopoietic cells in AML. Understanding the functional characterization of (lymph)angiogenic factors in the BM niche in AML will also be helpful in interrupting the engraftment of leukemic stem cells and for enhancing immune cell function by modulating the tumor microenvironment.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Cytokines/*immunology
		                        			;
		                        		
		                        			Hematopoietic Stem Cells/immunology/*pathology
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Immunity, Cellular
		                        			;
		                        		
		                        			Leukemia, Myeloid, Acute/immunology/*physiopathology
		                        			;
		                        		
		                        			*Lymphangiogenesis
		                        			;
		                        		
		                        			Lymphatic Vessels/immunology/*physiopathology
		                        			;
		                        		
		                        			Vascular Endothelial Growth Factor A/immunology
		                        			
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail