1.Clinical and genetic analysis of eight children with Primary hypertrophic cardiomyopathy.
Qiqing SUN ; Fangjie WANG ; Linbo SU ; Kun HE ; Yingying LI ; Chanjuan HAO ; Wei LI ; Jun GUO
Chinese Journal of Medical Genetics 2023;40(10):1211-1216
OBJECTIVE:
To explore the clinical and genetic characteristics of eight children with Primary hypertrophic cardiomyopathy (HCM).
METHODS:
Eight children with HCM admitted to the Department of Cardiology of Henan Children's Hospital from January 2018 to December 2021 were selected as the study subjects. Clinical data of the children were collected. Whole exome sequencing was carried out on two children, and trio whole exome sequencing was carried out on the remainder 6 children. Sanger sequencing was used to verify the candidate variants in the children and their parents, and the pathogenicity of the variants was evaluated based on the guidelines from the American College of Medical Genetics and Genomics (ACMG).
RESULTS:
The patients had included 5 males and 3 females, with their ages ranging from 5 to 13 years old. The average age of diagnosis was (7.87 ± 4.8) years old, and the cardiac phenotype showed non-obstructive HCM in all of the patients. WES has identified variants of the MYH7 gene in 4 children, including c.2155C>T (p.Arg719Trp), c.1208G>A (p.Arg403Gln), c.1358G>A (p.Arg453His), and c.1498G>A (p.Glu500Lys). Based on the guidelines from the ACMG, the first 3 variants were classified as pathogenic, while c.1498G>A (p.Glu500Lys) was classified as likely pathogenic (PM1+PM2_Supporting+PM6+PP3), which was also unreported previously. The remaining four children had all harbored maternal variants, including MYL2: c.173G>A (p.Arg58Gln; classified as pathogenic), TPM1: c.574G>A (p.Glu192Lys) and ACTC1: c.301G>A (p.Glu101Lys)(both were classified as likely pathogenic), and MYBPC3: c.146T>G (p.Ile49Ser; classified as variant of uncertain significance). Seven children were treated with 0.5 ~ 3 mg/(kg·d) propranolol, and their symptoms had improved significantly. They were followed up until September 30, 2022 without further cardiac event.
CONCLUSION
Genetic testing can clarify the molecular basis for unexplained cardiomyopathy and provide a basis for clinical diagnosis and genetic counseling. Discovery of the c.1498G>A (p.Glu500Lys) variant has also expanded the spectrum of MYH7 gene mutations underlying HCM.
Female
;
Male
;
Humans
;
Child
;
Child, Preschool
;
Adolescent
;
Cytoskeletal Proteins
;
Family
;
Genetic Counseling
;
Genetic Testing
;
Cardiomyopathy, Hypertrophic/genetics*
2.Non-muscle myosin heavy chain 9 gene-related disorders with thrombocytopenia: report of two pedigrees and literature review.
Shu Ting MAO ; Bai LI ; Dao WANG ; Shan Shan LIU ; Shu Fang SU ; Lin Lin WEI ; Fang Yuan CHAI ; Ying LIU ; Yu Feng LIU
Chinese Journal of Pediatrics 2023;61(9):833-838
Objective: To summarize the clinical characteristics and gene variants of 2 pedigrees of non-muscle myosin heavy chain 9 related diseases (MYH9-RD) in children. Methods: The basic information, clinical features, gene variants and laboratory tests of MYH9-RD patients from 2 pedigrees confirmed in the First Affiliated Hospital of Zhengzhou University in November 2021 and July 2022 were analyzed retrospectively. "Non-muscle myosin heavy chain 9 related disease" "MYH9" and "children" were used as key words to search at Pubmed database, CNKI and Wanfang database up to February 2023. The MYH9-RD gene variant spectrum and clinical data were analyzed and summarized. Results: Proband 1 (male, 11 years old) sought medical attention due to epistaxis, the eldest sister and second sister of proband 1 only showed excessive menstrual bleeding, the skin and mucous membrane of the their mother were prone to ecchymosis after bumping, the uncle of proband 1 had kidney damage, and the maternal grandmother and maternal great-grandmother of proband 1 had a history of cataracts. There were 7 cases of phenotypic abnormalities in this pedigree. High-throughput sequencing showed that the proband 1 MYH9 gene had c.279C>G (p.N93K) missense variant, and family verification analysis showed that the variant was inherited from the mother. A total of 4 patients including proband 1 and family members were diagnosed with MYH9-RD. The proband 2 (female, 1 year old) sought medical attention duo to fever and cough, and the father's physical examination revealed thrombocytopenia. There were 2 cases of phenotypic abnormalities in this pedigree. High-throughput sequencing showed that there was a c.4270G>A (p.D1424N) missense variant in the proband 2 MYH9 gene, and family verification analysis showed that the variant was inherited from the father. A total of 2 patients including proband 2 and his father were diagnosed with MYH9-RD. A total of 99 articles were retrieved, including 32 domestic literatures and 67 foreign literatures. The MYH9-RD cases totaled 149 pedigrees and 197 sporadic patients, including 2 pedigrees in our study. There were 101 cases with complete clinical data, including 62 sporadic cases and 39 pedigrees. There were 56 males and 45 females, with an average age of 6.9 years old. The main clinical manifestations were thrombocytopenia, skin ecchymosis, and epistaxis. Most patients didn't receive special treatment after diagnosis. Six English literatures related to MYH9-RD caused by c.279C>G mutation in MYH9 gene were retrieved. Italy reported the highest number of cases (3 cases). Twelve literatures related to MYH9-RD caused by c.4270G>A mutation in MYH9 gene were retrieved. China reported the highest number of cases (9 cases). Conclusions: The clinical manifestations of patients in the MYH9-RD pedigrees varied greatly. MYH9 gene c.279C>G and c.4270G>A mutations are the cause of MYH9-RD.
Infant
;
Humans
;
Female
;
Male
;
Child
;
Myosin Heavy Chains/genetics*
;
Ecchymosis
;
Epistaxis
;
Pedigree
;
Retrospective Studies
;
Muscular Diseases
;
Thrombocytopenia
;
Cytoskeletal Proteins
3.High expression of MYH9 inhibits apoptosis of non-small cell lung cancer cells through activating the AKT/c-Myc pathway.
Fang LIU ; Lanzhu PENG ; Jingle XI
Journal of Southern Medical University 2023;43(4):527-536
OBJECTIVE:
To investigate the role of myosin heavy chain 9 (MYH9) in regulation of cell proliferation, apoptosis, and cisplatin sensitivity of non-small cell lung cancer (NSCLC).
METHODS:
Six NSCLC cell lines (A549, H1299, H1975, SPCA1, H322, and H460) and a normal bronchial epithelial cell line (16HBE) were examined for MYH9 expression using Western blotting. Immunohistochemical staining was used to detect MYH9 expression in a tissue microarray containing 49 NSCLC and 43 adjacent tissue specimens. MYH9 knockout cell models were established in H1299 and H1975 cells using CRISPR/Cas9 technology, and the changes in cell proliferation cell were assessed using cell counting kit-8 (CCK8) and clone formation assays; Western blotting and flow cytometry were used to detect apoptosis of the cell models, and cisplatin sensitivity of the cells was evaluated using IC50 assay. The growth of tumor xenografts derived from NSCLC with or without MYH9 knockout was observed in nude mice.
RESULTS:
MYH9 expression was significantly upregulated in NSCLC (P < 0.001), and the patients with high MYH9 expression had a significantly shorter survival time (P=0.023). In cultured NSCLC cells, MYH9 knockout obviously inhibited cell proliferation (P < 0.001), promoted cell apoptosis (P < 0.05), and increased their chemosensitivity of cisplatin. In the tumor-bearing mouse models, the NSCLC cells with MYH9 knockout showed a significantly lower growth rate (P < 0.05). Western blotting showed that MYH9 knockout inactivated the AKT/c- Myc axis (P < 0.05) to inhibit the expression of BCL2- like protein 1 (P < 0.05), promoted the expression of BH3- interacting domain death agonist and the apoptosis regulator BAX (P < 0.05), and activated apoptosis-related proteins caspase-3 and caspase-9 (P < 0.05).
CONCLUSION
High expression of MYH9 contributes to NSCLC progression by inhibiting cell apoptosis via activating the AKT/c-Myc axis.
Animals
;
Humans
;
Mice
;
Apoptosis
;
Carcinoma, Non-Small-Cell Lung/metabolism*
;
Cell Line, Tumor
;
Cell Proliferation
;
Cisplatin/pharmacology*
;
Cytoskeletal Proteins/metabolism*
;
Lung Neoplasms/metabolism*
;
Mice, Nude
;
Myosin Heavy Chains/metabolism*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Signal Transduction
4.Lung Squamous Cell Carcinoma with EML4-ALK Fusion and TP53 Co-mutation Treated with Ensartinib: A Case Report and Literature Review.
Donglai LV ; Chunwei XU ; Chong WANG ; Qiuju SANG
Chinese Journal of Lung Cancer 2023;26(1):78-82
Lung squamous cell carcinoma (LSCC) accounts for approximately 30% of non-small cell lung cancer (NSCLC) cases and is the second most common histological type of lung cancer. Anaplastic lymphoma kinase (ALK)-positive NSCLC accounts for only 2%-5% of all NSCLC cases, and is almost exclusively detected in patients with lung adenocarcinoma. Thus, ALK testing is not routinely performed in the LSCC population, and the efficacy of such treatment for ALK-rearranged LSCC remains unknown. Echinoderm microtubule associated protein like 4 (EML4)-ALK (V1) and TP53 co-mutations were identified by next generation sequencing (NGS) in this patient with advanced LSCC. On December 3, 2020, Ensatinib was taken orally and the efficacy was evaluated as partial response (PR). The progression-free survival (PFS) was 19 months. When the disease progressed, the medication was changed to Loratinib. To our knowledge, Enshatinib created the longest PFS of ALK-mutant LSCC patients treated with targeted therapy since literature review. Herein, we described one case treated by Enshatinib involving a patient with both EML4-ALK and TP53 positive LSCC, and the relevant literatures were reviewed for discussing the treatment of this rare disease.
.
Humans
;
Carcinoma, Non-Small-Cell Lung/drug therapy*
;
Lung Neoplasms/pathology*
;
Anaplastic Lymphoma Kinase/metabolism*
;
Carcinoma, Squamous Cell/genetics*
;
Mutation
;
Cytoskeletal Proteins/genetics*
;
Lung/pathology*
;
Oncogene Proteins, Fusion/genetics*
;
Protein Kinase Inhibitors/therapeutic use*
;
Tumor Suppressor Protein p53/genetics*
5.Clinical characteristics of four children with 3M syndrome and a literature review.
Ningan XU ; Kangxiang LIU ; Yan ZHONG
Chinese Journal of Medical Genetics 2023;40(7):795-801
OBJECTIVE:
To analyze the clinical features of 3M syndrome and effect of growth hormone therapy.
METHODS:
Clinical data of four children diagnosed with 3M syndrome by whole exome sequencing at Hunan Children's Hospital from January 2014 to February 2022 were retrospectively analyzed, which included clinical manifestation, results of genetic testing and recombinant human growth hormone (rhGH) therapy. A literature review was also carried our for Chinese patients with 3M syndrome.
RESULTS:
The clinical manifestations of the 4 patients included severe growth retardation, facial dysmorphism and skeletal malformations. Two patients were found to harbor homozygous variants of CUL7 gene, namely c.4717C>T (p.R1573*) and c.967_993delinsCAGCTGG (p.S323Qfs*33). Two patients were found to harbor 3 heterozygous variants of the OBSL1 gene including c.1118G>A (p.W373*), c.458dupG (p.L154Pfs*1002) and c.690dupC (p.E231Rfs*23), among which c.967_993delinsCAGCTGG and c.1118G>A were unreported previously. Eighteen Chinese patients with 3M syndrome were identified through the literature review, including 11 cases (11/18, 61.1%) carrying CUL7 gene variants and 7 cases (7/18, 38.9%) carrying OBSL1 gene variants. The main clinical manifestations were in keeping with previously reported. Four patients were treated with growth hormone, 3 showed obvious growth acceleration, and no adverse reaction was noted.
CONCLUSION
3M syndrome has a typical appearance and obvious short stature. To attain accurate diagnosis, genetic testing should be recommended for children with a stature of less than -3 SD and facial dysmorphism. The long-term efficacy of growth hormone therapy for patients with 3M syndrome remains to be observed.
Humans
;
Child
;
Retrospective Studies
;
Dwarfism/genetics*
;
Muscle Hypotonia/genetics*
;
Growth Hormone/therapeutic use*
;
Cytoskeletal Proteins/genetics*
7.Diagnosis of a child with mitochondrial myopathy and cerebellar atrophy with ataxia due to compound heterozygous variants of MSTO1 gene.
Yang TIAN ; Zhen SHI ; Chi HOU ; Wenjuan LI ; Haixia ZHU ; Xiaojing LI ; Wenxiong CHEN
Chinese Journal of Medical Genetics 2022;39(4):417-420
OBJECTIVE:
To explore the genetic basis for a child with myopathy and cerebellar atrophy with ataxia.
METHODS:
Clinical examinations and laboratory testing were carried out for the patient. The proband and the parents' genomic DNA was extracted from peripheral blood samples and subjected to trio whole-exome sequencing. Candidate variant was validated by Sanger sequencing.
RESULTS:
The 1-year-and-8-month-old boy manifested motor developmental delay, ataxia, hypomyotonia, increased serum creatine kinase. Cranial MRI showed cerebellar atrophy with progressive aggravation. Genetic testing revealed that the patient has harbored compound heterozygous variants of the MSTO1 gene, namely c.13delG (p.Ala5ProfsTer68) and c.971C>T (p.Thr324Ile), which were respectively inherited from his mother and father. The former was unreported previously and was predicted to be likely pathogenic, whilst the latter has been reported previously and was predicted to be of uncertain significance.
CONCLUSION
The compound heterozygous c.13delG (p.Ala5ProfsTer68) and c.971C>T (p.Thr324Ile) variants probably underlay the disease in the proband. Above finding has enriched the spectrum of MSTO1 gene variants underlying mitochondrial myopathy and cerebellar atrophy with ataxia.
Ataxia/genetics*
;
Atrophy/genetics*
;
Cell Cycle Proteins/genetics*
;
Child
;
Cytoskeletal Proteins/genetics*
;
Humans
;
Infant
;
Male
;
Mitochondrial Myopathies
;
Mutation
;
Neurodegenerative Diseases
;
Whole Exome Sequencing
8.Increased expression of coronin-1a in amyotrophic lateral sclerosis: a potential diagnostic biomarker and therapeutic target.
Qinming ZHOU ; Lu HE ; Jin HU ; Yining GAO ; Dingding SHEN ; You NI ; Yuening QIN ; Huafeng LIANG ; Jun LIU ; Weidong LE ; Sheng CHEN
Frontiers of Medicine 2022;16(5):723-735
Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disease. At present, no definite ALS biomarkers are available. In this study, exosomes from the plasma of patients with ALS and healthy controls were extracted, and differentially expressed exosomal proteins were compared. Among them, the expression of exosomal coronin-1a (CORO1A) was 5.3-fold higher than that in the controls. CORO1A increased with disease progression at a certain proportion in the plasma of patients with ALS and in the spinal cord of ALS mice. CORO1A was also overexpressed in NSC-34 motor neuron-like cells, and apoptosis, oxidative stress, and autophagic protein expression were evaluated. CORO1A overexpression resulted in increased apoptosis and oxidative stress, overactivated autophagy, and hindered the formation of autolysosomes. Moreover, CORO1A activated Ca2+-dependent phosphatase calcineurin, thereby blocking the fusion of autophagosomes and lysosomes. The inhibition of calcineurin activation by cyclosporin A reversed the damaged autolysosomes. In conclusion, the role of CORO1A in ALS pathogenesis was discovered, potentially affecting the disease onset and progression by blocking autophagic flux. Therefore, CORO1A might be a potential biomarker and therapeutic target for ALS.
Mice
;
Animals
;
Amyotrophic Lateral Sclerosis/pathology*
;
Calcineurin/metabolism*
;
Motor Neurons/pathology*
;
Microfilament Proteins/metabolism*
;
Cytoskeletal Proteins/metabolism*
9.Kindlin-2 regulates endometrium development via mTOR and Hippo signaling pathways in mice.
Jing ZHANG ; Jia Gui SONG ; Zhen Bin WANG ; Yu Qing GONG ; Tian Zhuo WANG ; Jin Yu ZHOU ; Jun ZHAN ; Hong Quan ZHANG
Journal of Peking University(Health Sciences) 2022;54(5):846-852
OBJECTIVE:
To investigate the effects and mechanisms of Kindlin-2 on uterus development and reproductive capacity in female mice.
METHODS:
Cdh16-Cre tool mice and Kindlin-2flox/flox mice were used to construct the mouse model of uterus specific knockout of Kindlin-2, and the effects of Kindlin-2 deletion on uterine development and reproduction capacity of female mice were observed. High expression and knockdown of Kindlin-2 in endometrial cancer cell lines HEC-1 and Ish were used to detect the regulation of mammalian target of rapamycin (mTOR) signaling pathway. In addition, uterine proteins of the female mice with specific knockout of Kindlin-2 and female mice in the control group were extracted to detect the protein levels of key molecules of mTOR signaling pathway and Hippo signaling pathway.
RESULTS:
The mouse model of uterine specific knockout of Kindlin-2 was successfully constructed. The knockout efficiency of Kindlin-2 in mouse uterus was identified and verified by mouse tail polymerase chain reaction (PCR), Western blot protein identification, immunohistochemical staining (IHC) and other methods. Compared with the control group, the female mice with uterus specific deletion of Kindlin-2 lost weight, seriously impaired reproductive ability, and the number of newborn mice decreased, but the proportion of the female mice and male mice in the newborn mice did not change. Hematoxylin eosin staining (HE) experiment showed that the endometrium of Kindlin-2 knockout group was incomplete and the thickness of uterine wall became thinner. In terms of mechanism, the deletion of Kindlin-2 in endo-metrial cancer cell lines HEC-1 and Ish could downregulate the protein levels of mTOR, phosphorylated mTOR, adenosine monophosphate-activated protein kinase (AMPK), phosphorylated AMPK and phosphorylated ribosomal protein S6 (S6), and the mTOR signal pathway was inhibited. It was found that the specific deletion of Kindlin-2 could upregulate the protein levels of Mps one binding 1 (MOB1) and phosphorylated Yes-associated protein (YAP) in the uterus of the female mice, and the Hippo signal pathway was activated.
CONCLUSION
Kindlin-2 inhibits the development of uterus by inhibiting mTOR signal pathway and activating Hippo signal pathway, thereby inhibiting the fertility of female mice.
AMP-Activated Protein Kinases/metabolism*
;
Adenosine Monophosphate/metabolism*
;
Animals
;
Cadherins/metabolism*
;
Cytoskeletal Proteins/metabolism*
;
Endometrium/metabolism*
;
Eosine Yellowish-(YS)/metabolism*
;
Female
;
Hematoxylin/metabolism*
;
Hippo Signaling Pathway
;
Male
;
Mammals/metabolism*
;
Mice
;
Muscle Proteins
;
Ribosomal Protein S6/metabolism*
;
Sirolimus/metabolism*
;
TOR Serine-Threonine Kinases/metabolism*
;
YAP-Signaling Proteins
10.Whole-transcriptome sequencing analysis of placental differential miRNA expression profile in Down syndrome.
Jian Ping HE ; Jian TANG ; Hong SU ; Cui Hua SHEN ; Sheng Jun LUO ; Hai Tao WANG ; Yuan QIAN ; Meng Xin LYU
Journal of Southern Medical University 2022;42(3):418-424
OBJECTIVE:
To identify new biomarkers and molecular pathogenesis of Down syndrome (DS) by analyzing differentially expressed miRNAs in the placentas and their biological pathways.
METHODS:
Whole transcriptome sequencing was used to identify the differentially expressed miRNAs in DS (n=3) and normal placental samples (n=3) diagnosed by prenatal diagnosis. The target genes were predicted using miRWalk, Targetscan and miRDB, and GO and KEGG pathway analyses were performed for gene enrichment studies.
RESULTS:
We identified a total of 82 differentially expressed miRNAs in the placental tissues of DS, including 29 up-regulated miRNAs (fold change ≥2, P < 0.05) and 15 down-regulated miRNAs (fold change ≥2, P < 0.05), among which 10 miRNAs with relatively high expression abundance were selected for further analysis, including 4 up-regulated and 6 down-regulated miRNAs. These selected miRNAs shared the common target genes BTBD3 and AUTS2, both of which were associated with neurodevelopment. GO analysis showed that the target genes of the selected miRNAs were mainly enriched in protein binding, hydrolytic enzymes, metal ion binding protein combining, transferase activity, nucleotide, cytoplasmic constituents, nucleus composition, transcriptional regulation, RNA metabolism regulation, DNA-dependent RNA polymerase Ⅱ promoter transcriptional regulation, eye development, and sensory organ development. KEGG enrichment analysis showed that the target genes of these differentially expressed miRNAs were involved in the signaling pathways including tumor-related signaling pathway, PI3K-Akt signaling pathway, Ras signaling pathway, Rap1 signaling pathway, cytoskeletal regulatory signaling pathway, purine metabolization-related signaling pathway and P53 signaling pathway.
CONCLUSION
The differentially expressed miRNAs may play important roles in placental damage and pregnancy pathology in DS and provide clues for the prevention and treatment of mental retardation-related diseases.
Cytoskeletal Proteins/metabolism*
;
Down Syndrome/metabolism*
;
Female
;
Gene Expression Profiling
;
Humans
;
MicroRNAs/metabolism*
;
Nerve Tissue Proteins
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Placenta/metabolism*
;
Pregnancy
;
Transcription Factors/metabolism*
;
Transcriptome
;
Whole Exome Sequencing

Result Analysis
Print
Save
E-mail