1.Family communication of genetic risk: What is it and why does it matter?.
Acta Medica Philippina 2025;59(8):7-15
Inherited conditions have implications not only for the individual affected but for the entire family. It is in this context that family communication of genetic risk information is important to understand. This paper aims to provide an overview of the construct of family communication of genetic risk and provide implications for healthcare providers. A search of relevant literature was done with electronic databases including PubMed, CINAHL, Embase, Scopus, and Web of Science. The findings from the literature were organized based on the Family Communication of Genetic Risk (FCGR) conceptual framework which highlights the attributes of the family communication of genetic risk process including influential factors, communication strategy, communication occurrence, and outcomes of communication. Healthcare providers need to understand how individuals share genetic risk with their family members so that appropriate support and interventions can be provided to them. This is especially important across countries, including the Philippines, as genetic services and testing move beyond the traditional medical genetics clinic to other medical specialties, a development where we would expect an increase in individuals and family members undergoing genetic evaluation and testing.
Communication ; Family ; Genetic Predisposition To Disease ; Genetic Testing
3.Emerging roles of exosomes in oral diseases progression.
Jiayi WANG ; Junjun JING ; Chenchen ZHOU ; Yi FAN
International Journal of Oral Science 2024;16(1):4-4
Oral diseases, such as periodontitis, salivary gland diseases, and oral cancers, significantly challenge health conditions due to their detrimental effects on patient's digestive functions, pronunciation, and esthetic demands. Delayed diagnosis and non-targeted treatment profoundly influence patients' prognosis and quality of life. The exploration of innovative approaches for early detection and precise treatment represents a promising frontier in oral medicine. Exosomes, which are characterized as nanometer-sized extracellular vesicles, are secreted by virtually all types of cells. As the research continues, the complex roles of these intracellular-derived extracellular vesicles in biological processes have gradually unfolded. Exosomes have attracted attention as valuable diagnostic and therapeutic tools for their ability to transfer abundant biological cargos and their intricate involvement in multiple cellular functions. In this review, we provide an overview of the recent applications of exosomes within the field of oral diseases, focusing on inflammation-related bone diseases and oral squamous cell carcinomas. We characterize the exosome alterations and demonstrate their potential applications as biomarkers for early diagnosis, highlighting their roles as indicators in multiple oral diseases. We also summarize the promising applications of exosomes in targeted therapy and proposed future directions for the use of exosomes in clinical treatment.
Humans
;
Exosomes
;
Quality of Life
;
Extracellular Vesicles
;
Biomarkers
;
Cell Communication
;
Mouth Neoplasms
4.Standardizing hazard signage in the Laboratory Research Division of the Research Institute for Tropical Medicine:A step towards improved safety compliance
Philippine Journal of Pathology 2024;9(2):53-56
Old signage faced iconography, variable layouts, visual presentations, and contents, as well as degradation issues, undermine the effectiveness of hazard communication in the laboratory. A 2016 project was initiated to standardize all hazard signages at the Laboratory Research Division of the Research Institute for Tropical Medicine (RITM), incorporating standard colors and iconography for better compliance and safety. As part of a broader initiative to enhance biorisk practices within the institute, there are plans for improvement and expansion to non-laboratory areas.
Containment Of Biohazards ; Biosecurity ; Laboratories ; Communication ; Laboratory Personnel
5.Family communication of genetic risk: What is it and why does it matter?
Acta Medica Philippina 2024;58(Early Access 2024):1-9
Inherited conditions have implications not only for the individual affected but for the entire family. It is in this context that family communication of genetic risk information is important to understand. This paper aims to provide an overview of the construct of family communication of genetic risk and provide implications for healthcare providers. A search of relevant literature was done with electronic databases including PubMed, CINAHL, Embase, Scopus, and Web of Science. The findings from the literature were organized based on the Family Communication of Genetic Risk (FCGR) conceptual framework which highlights the attributes of the family communication of genetic risk process including influential factors, communication strategy, communication occurrence, and outcomes of communication. Healthcare providers need to understand how individuals share genetic risk with their family members so that appropriate support and interventions can be provided to them. This is especially important across countries, including the Philippines, as genetic services and testing move beyond the traditional medical genetics clinic to other medical specialties, a development where we would expect an increase in individuals and family members undergoing genetic evaluation and testing.
communication
;
family
;
genetic predisposition to disease
;
genetic testing
6.Cognitive differences between Taoism and medical science in the location of "Jiaji".
Xin-Yue ZHANG ; Shu-Jian ZHANG
Chinese Acupuncture & Moxibustion 2023;43(9):1070-1075
The differences in the cognition on the location of "Jiaji" between Taoism and medical science are summarized through literature searching. In the medical field, "Jiaji" is generally described as "Jiaji Xue (point)", which is considered as EX-B 2, while, in Taoism, it is expressed as "Jiaji Guan (pass)", focusing on the crucial parts of the body. Medical scholars lay their attention to the distance of "Jiaji" lateral to the spine, in which "Jia" (place on both sides) is mostly considered. In comparison, the Taoists emphasize the central axis on the back of human body expressed as "Jiaji Gu (bone)" and "Jiaji Sanguan (three crucial parts)", in which, "Ji (spine)" is the key. Due to the therapeutic purposes of acupuncture, medical scholars focus on the communication of "Jiaji" with the body surface ultimately. Based on the inner perspective of Taoism, "Jiaji" is connoted to be the three-dimensional structural space located deeply inside of the body. The cognitive differences in the location of "Jiaji" between Taoism and medical science reflect the discrepancy in the cognitive dimensions and approaches to the human body between them, which provide the references for the textual research of "Jiaji" in traditional Chinese medicine.
Humans
;
Medicine
;
Religious Philosophies
;
Acupuncture Therapy
;
Cognition
;
Communication
7.Pathophysiological implications of cellular senescence and prospects for novel anti-aging drugs.
Acta Physiologica Sinica 2023;75(6):847-863
Chronological aging is the leading risk factor for human diseases, while aging at the cellular level, namely cellular senescence, is the fundamental driving force of organismal aging. The impact of cellular senescence on various life processes, including normal physiology, organismal aging and the progress of various age-related pathologies, has been largely ignored for a long time. However, with recent advancement in relevant fields, cellular senescence has become the core of aging biology and geriatric medicine. Although senescent cells play important roles in physiological processes including tissue repair, wound healing, and embryonic development, they can also contribute to tissue dysfunction, organ degeneration and various pathological conditions during adulthood. Senescent cells exert paracrine effects on neighboring cells in tissue microenvironments by developing a senescence-associated secretory phenotype, thus maintaining long-term and active intercellular communications that ultimately results in multiple pathophysiological effects. This is regarded as one of the most important discoveries in life science of this century. Notably, selective elimination of senescent cells through inducing their apoptosis or specifically inhibiting the senescence-associated secretory phenotype has shown remarkable potential in preclinical and clinical interventions of aging and age-related diseases. This reinforces the belief that senescent cells are the key drug target to alleviate various aging syndromes. However, senescent cells exhibit heterogeneity in terms of form, function and tissue distribution, and even differ among species, which presents a challenge for the translation of significant research achievements to clinical practice in future. This article reviews and discusses the characteristics of senescent cells, current targeting strategies and future trends, providing useful and valuable references for the rapidly blooming aging biology and geriatric medicine.
Humans
;
Adult
;
Aged
;
Cellular Senescence/genetics*
;
Aging
;
Apoptosis
;
Cell Communication
;
Wound Healing/physiology*
8.Advances in the Regulation of Follicular Development by Extracellular Vesicles and Non-Coding RNAs.
Acta Academiae Medicinae Sinicae 2023;45(5):821-826
Extracellular vesicles (EV),nanoscale vesicles encapsulated by phospholipid bilayers,are rich in biological molecules such as nucleic acids,metabolites,proteins,and lipids derived from parental cells.They are mainly involved in intercellular communication,signal transmission,and material transport and affect the functions of target cells.Ovulation disorders account for a higher proportion in the factors causing infertility which demonstrates increasing incidence year by year.Non-coding RNAs participate in a series of physiological and pathological processes of follicular development,playing a key role in female infertility.This review systematically introduces the types and biological roles of EV and elaborates on the regulation of follicular development from the effects of EV and non-coding RNAs on granulosa cell function,oocyte maturation,ovulation,luteal formation,and steroid hormone synthesis,providing a new idea and a breakthrough point for the diagnosis and treatment of infertility.
Female
;
Humans
;
Oogenesis/physiology*
;
Granulosa Cells
;
Extracellular Vesicles/physiology*
;
Cell Communication
;
RNA, Untranslated
;
Infertility
9.Research Overview of Internet of Things Technology in Medical Engineering.
Wanrong LIU ; Bin LI ; Zhiyong JI
Chinese Journal of Medical Instrumentation 2023;47(5):576-581
Internet of Things plays a vital role in the field of healthcare. Smart medical devices, innovative sensors and lightweight communication protocols are making the Internet of Medical Things possible. This paper summarizes the research progress of Internet of Things technology in medical engineering from two aspects of health monitoring system and ingestible sensor monitoring equipment. The health monitoring system is analyzed from heart disease monitoring, diabetes monitoring and brain nerve monitoring. The medical equipment that can absorb sensors is represented by capsule endoscope. This paper further summarizes the relevant situation of smart hospital, and finally discusses the challenges and countermeasures of the Internet of Things technology in medical engineering, in order to lay the foundation and provide ideas for the research of the Internet of Things technology in medical engineering.
Internet of Things
;
Technology
;
Internet
;
Brain
;
Communication
10.Single-cell profiling reveals Müller glia coordinate retinal intercellular communication during light/dark adaptation via thyroid hormone signaling.
Min WEI ; Yanping SUN ; Shouzhen LI ; Yunuo CHEN ; Longfei LI ; Minghao FANG ; Ronghua SHI ; Dali TONG ; Jutao CHEN ; Yuqian MA ; Kun QU ; Mei ZHANG ; Tian XUE
Protein & Cell 2023;14(8):603-617
Light adaptation enables the vertebrate visual system to operate over a wide range of ambient illumination. Regulation of phototransduction in photoreceptors is considered a major mechanism underlying light adaptation. However, various types of neurons and glial cells exist in the retina, and whether and how all retinal cells interact to adapt to light/dark conditions at the cellular and molecular levels requires systematic investigation. Therefore, we utilized single-cell RNA sequencing to dissect retinal cell-type-specific transcriptomes during light/dark adaptation in mice. The results demonstrated that, in addition to photoreceptors, other retinal cell types also showed dynamic molecular changes and specifically enriched signaling pathways under light/dark adaptation. Importantly, Müller glial cells (MGs) were identified as hub cells for intercellular interactions, displaying complex cell‒cell communication with other retinal cells. Furthermore, light increased the transcription of the deiodinase Dio2 in MGs, which converted thyroxine (T4) to active triiodothyronine (T3). Subsequently, light increased T3 levels and regulated mitochondrial respiration in retinal cells in response to light conditions. As cones specifically express the thyroid hormone receptor Thrb, they responded to the increase in T3 by adjusting light responsiveness. Loss of the expression of Dio2 specifically in MGs decreased the light responsive ability of cones. These results suggest that retinal cells display global transcriptional changes under light/dark adaptation and that MGs coordinate intercellular communication during light/dark adaptation via thyroid hormone signaling.
Animals
;
Mice
;
Dark Adaptation
;
Light
;
Retina
;
Retinal Cone Photoreceptor Cells/metabolism*
;
Adaptation, Ocular
;
Neuroglia/physiology*
;
Cell Communication
;
Thyroid Hormones


Result Analysis
Print
Save
E-mail