1.Potassium dehydroandrographolide succinate regulates the MyD88/CDH13 signaling pathway to enhance vascular injury-induced pathological vascular remodeling.
Qiru GUO ; Jiali LI ; Zheng WANG ; Xiao WU ; Zhong JIN ; Song ZHU ; Hongfei LI ; Delai ZHANG ; Wangming HU ; Huan XU ; Lan YANG ; Liangqin SHI ; Yong WANG
Chinese Journal of Natural Medicines (English Ed.) 2024;22(1):62-74
Pathological vascular remodeling is a hallmark of various vascular diseases. Previous research has established the significance of andrographolide in maintaining gastric vascular homeostasis and its pivotal role in modulating endothelial barrier dysfunction, which leads to pathological vascular remodeling. Potassium dehydroandrographolide succinate (PDA), a derivative of andrographolide, has been clinically utilized in the treatment of inflammatory diseases precipitated by viral infections. This study investigates the potential of PDA in regulating pathological vascular remodeling. The effect of PDA on vascular remodeling was assessed through the complete ligation of the carotid artery in C57BL/6 mice. Experimental approaches, including rat aortic primary smooth muscle cell culture, flow cytometry, bromodeoxyuridine (BrdU) incorporation assay, Boyden chamber cell migration assay, spheroid sprouting assay, and Matrigel-based tube formation assay, were employed to evaluate the influence of PDA on the proliferation and motility of smooth muscle cells (SMCs). Molecular docking simulations and co-immunoprecipitation assays were conducted to examine protein interactions. The results revealed that PDA exacerbates vascular injury-induced pathological remodeling, as evidenced by enhanced neointima formation. PDA treatment significantly increased the proliferation and migration of SMCs. Further mechanistic studies disclosed that PDA upregulated myeloid differentiation factor 88 (MyD88) expression in SMCs and interacted with T-cadherin (CDH13). This interaction augmented proliferation, migration, and extracellular matrix deposition, culminating in pathological vascular remodeling. Our findings underscore the critical role of PDA in the regulation of pathological vascular remodeling, mediated through the MyD88/CDH13 signaling pathway.
Mice
;
Rats
;
Animals
;
Myeloid Differentiation Factor 88/metabolism*
;
Vascular Remodeling
;
Cell Proliferation
;
Vascular System Injuries/pathology*
;
Carotid Artery Injuries/pathology*
;
Molecular Docking Simulation
;
Muscle, Smooth, Vascular
;
Cell Movement
;
Mice, Inbred C57BL
;
Signal Transduction
;
Succinates/pharmacology*
;
Potassium/pharmacology*
;
Cells, Cultured
;
Diterpenes
;
Cadherins
2.Hydroxysafflor Yellow A Promotes HaCaT Cell Proliferation and Migration by Regulating HBEGF/EGFR and PI3K/AKT Pathways and Circ_0084443.
Yue ZHANG ; Yan-Wei XIAO ; Jing-Xin MA ; Ao-Xue WANG
Chinese journal of integrative medicine 2024;30(3):213-221
OBJECTIVE:
To investigate the effect and possible mechanism of hydroxysafflor yellow A (HSYA) on human immortalized keratinocyte cell proliferation and migration.
METHODS:
HaCaT cells were treated with HSYA. Cell proliferation was detected by the cell counting kit-8 assay, and cell migration was measured using wound healing assay and Transwell migration assay. The mRNA and protein expression levels of heparin-binding epidermal growth factor (EGF)-like growth factor (HBEGF), EGF receptor (EGFR), phosphatidylinositol 3-kinase (PI3K), protein kinase B (AKT), mammalian target of rapamycin (mTOR), and hypoxia-inducible factor-1α (HIF-1α) were detected by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot, respectively. Circ_0084443-overexpressing HaCaT cells and empty plasmid HaCaT cells were constructed using the lentiviral stable transfection and treated with HSYA. The expression of circ_0084443 was detected by qRT-PCR.
RESULTS:
HSYA (800 µmol/L) significantly promoted HaCaT cell proliferation and migration (P<0.05 or P<0.01). It also increased the mRNA and protein expression levels of HBEGF, EGFR, PI3K, AKT, mTOR and HIF-1α, and increased the phosphorylation levels of PI3K and AKT (P<0.05 or P<0.01). Furthermore, HSYA promoted HaCaT cell proliferation and migration via the HBEGF/EGFR and PI3K/AKT/mTOR signaling pathways (P<0.01). Circ_0084443 attenuated the mRNA expression levels of HBEGF, EGFR, PI3K, AKT, mTOR and HIF-1α (P<0.05). HSYA inhibited the circ_0084443 expression, further antagonized the inhibition of circ_0084443 on HBEGF, EGFR, PI3K, AKT, mTOR and HIF-1α, and promoted the proliferation of circ_0084443-overexpressing HaCaT cells (P<0.05 or P<0.01). However, HSYA could not influence the inhibitory effect of circ_0084443 on HaCaT cell migration (P>0.05).
CONCLUSION
HSYA played an accelerative role in HaCaT cell proliferation and migration, which may be attributable to activating HBEGF/EGFR and PI3K/AKT signaling pathways, and had a particular inhibitory effect on the keratinocyte negative regulator circ_0084443.
Humans
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Phosphatidylinositol 3-Kinase
;
Phosphatidylinositol 3-Kinases/metabolism*
;
ErbB Receptors/genetics*
;
TOR Serine-Threonine Kinases/metabolism*
;
Cell Proliferation
;
RNA, Messenger/genetics*
;
Cell Movement
;
Cell Line, Tumor
;
Chalcone/analogs & derivatives*
;
Quinones
3.lncRNA AC005224.4/miR-140-3p/SNAI2 regulating axis facilitates the invasion and metastasis of ovarian cancer through epithelial-mesenchymal transition.
Tingchuan XIONG ; Yinghong WANG ; Yuan ZHANG ; Jianlin YUAN ; Changjun ZHU ; Wei JIANG
Chinese Medical Journal 2023;136(9):1098-1110
BACKGROUND:
Ovarian cancer is one of the most widespread malignant diseases of the female reproductive system worldwide. The plurality of ovarian cancer is diagnosed with metastasis in the abdominal cavity. Epithelial-mesenchymal transition (EMT) exerts a vital role in tumor cell metastasis. However, it remains unclear whether long non-coding RNA (lncRNA) are implicated in EMT and influence ovarian cancer cell invasion and metastasis. This study was designed to investigate the impacts of lncRNA AC005224.4 on ovarian cancer.
METHODS:
LncRNA AC005224.4, miR-140-3p, and snail family transcriptional repressor 2 ( SNAI2 ) expression levels in ovarian cancer and normal ovarian tissues were determined using real-time quantitative polymerase chain reaction (qRT-PCR). Cell Counting Kit-8 (CCK-8) and Transwell (migration and invasion) assays were conducted to measure SKOV3 and CAOV-3 cell proliferation and metastasis. E-cadherin, N-cadherin, Snail, and Vimentin contents were detected using Western blot. Nude mouse xenograft assay was utilized to validate AC005224.4 effects in vivo . Dual-luciferase reporter gene assay confirmed the targeted relationship between miR-140-3p and AC005224.4 or SNAI2 .
RESULTS:
AC005224.4 and SNAI2 upregulation and miR-140-3p downregulation were observed in ovarian cancer tissues and cells. Silencing of AC005224.4 observably moderated SKOV3 and CAOV-3 cell proliferation, migration, invasion, and EMT process in vitro and impaired the tumorigenesis in vivo . miR-140-3p was a target of AC005224.4 and its reduced expression level was mediated by AC005224.4. miR-140-3p mimics decreased the proliferation, migration, and invasion of ovarian cancer cells. SNAI2 was identified as a novel target of miR-140-3p and its expression level was promoted by either AC005224.4 overexpression or miR-140-3p knockdown. Overexpression of SNAI2 also facilitated ovarian cancer cell viability and metastasis.
CONCLUSION
AC005224.4 was confirmed as an oncogene via sponging miR-140-3p and promoted SNAI2 expression, contributing to better understanding of ovarian cancer pathogenesis and shedding light on exploiting the novel lncRNA-directed therapy against ovarian cancer.
Animals
;
Mice
;
Humans
;
Female
;
MicroRNAs/metabolism*
;
RNA, Long Noncoding/metabolism*
;
Ovarian Neoplasms/metabolism*
;
Cell Line, Tumor
;
Epithelial-Mesenchymal Transition/genetics*
;
Cell Movement/genetics*
;
Cell Proliferation/genetics*
;
Gene Expression Regulation, Neoplastic/genetics*
;
Snail Family Transcription Factors/metabolism*
4.Effect of REG3A on proliferation and invasion of glioma cells by regulating PI3K/Akt signaling pathway.
Yan Chun QUAN ; Li Ying WANG ; Zeng Yong WANG ; Wei GAO ; Feng Yuan CHE
Chinese Journal of Oncology 2023;45(8):642-650
Objective: To investigate the effects of regenerating islet-derived protein 3A (REG3A) on the proliferation and invasion of glioma cells and its molecular mechanism. Methods: Five low-grade, five high-grade glioma tissues and ten adjacent tissues from glioma patients who underwent surgery at Linyi People's Hospital from October 17, 2017 to October 18, 2018 were collected. Human glioma cell lines (SF295, U251, TG905, A172, CRT) and a primary glioma cell line PT-1 were cultured in vitro. The protein and mRNA expressions of REG3A in these tissues and glioma cell lines were detected by Western blot and reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR). SF295 cells were infected with lentivirus and labeled as REG3A plasmid transfection group, and the TG905 cells were transfected with si-REG3A by liposome transfection reagent and labeled as si-REG3A transfection group. At the same time, the empty transfection control and blank control groups were set up. Glioma cells were treated with REG3A recombinant protein alone or in combination with Akt1/2 inhibitors. Cell counting kit-8 (CCK-8) and cell scratch assay were used to detect cell proliferation and invasion, respectively. Western blot was used to detect the protein expression of N-cadherin, vimentin and phosphorylation of Akt (p-Akt) in REG3A overexpressed and knockdown glioma cells. Results: RT-qPCR results showed that the mRNA expression levels of REG3A in glioma cells in each group were U251 (2.129±0.13), TG905 (2.22±0.59), CRT (5.02±0.31), A172 (6.62±1.34) and PT-1 (9.18±0.61), respectively, higher than its expression in SF295 cells (1.00±0.18, P<0.001). The mRNA expression level of REG3A in high-grade glioma tissue samples (3.18±2.92) was higher than that in the control group (1.00±1.14, P=0.031) and low-grade glioma group (0.90±0.67, P=0.014). The results of western blot and immunohistochemical staining were consistent with that of RT-qPCR. The migration rate of cells in si-REG3A transfection group [(60.57±5.30)%] was lower than that of the empty transfection group [(84.18±13.63)% (P=0.038)] and blank control group [(79.65±12.09)% (P=0.076)]. The results of the scratch experiment showed that the migration rate of cells in REG3A plasmid transfected cells in the SF295 group was (96.05±6.41)%, which was significantly higher than that of empty transfected cells [(74.47±8.23)%, P=0.021)]. REG3A recombinant protein could up-regulate the expression of N-cadherin, vimentin and p-Akt in SF295 cells. Compared with the control group [(100.00±2.53)%], the proliferation rate in the REG3A recombinant protein group [(117.70±10.24)%] was significantly up-regulated, and the proliferation rate in the REG3A recombinant protein+ Akt inhibitor group [(98.31±3.64)%] was significantly lower than that of the REG3A recombinant protein group (P=0.017). The migration rate of the REG3A recombinant protein+ Akt inhibitor group was (63.35±4.06)%, which was significantly lower than (89.26±11.07)% of the REG3A recombinant protein group (P=0.019). Conclusion: REG3A can promote the proliferation and invasion of human glioma cells by activating the PI3K/Akt signaling pathway.
Humans
;
Cell Line, Tumor
;
Cell Movement/genetics*
;
Cell Proliferation/genetics*
;
Glioma/genetics*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Protein Kinase Inhibitors
;
Proto-Oncogene Proteins c-akt/metabolism*
;
RNA, Messenger/metabolism*
;
Signal Transduction
;
Vimentin/metabolism*
5.miRNA-128-3p inhibits malignant behavior of glioma cells by downregulating KLHDC8A expression.
Zhengtao YU ; Jiameng LI ; Junwen JIANG ; You LI ; Long LIN ; Ying XIA ; Lei WANG
Journal of Southern Medical University 2023;43(9):1447-1459
OBJECTIVE:
To determine whether miRNA-128-3p regulates malignant biological behavior of glioma cells by targeting KLHDC8A.
METHODS:
Dual-luciferase reporter assays, qRT-PCR and Western blotting were used to verify the targeting of miRNA-128-3p to KLHDC8A. Edu assay, flow cytometry, Transwell assay and would healing assay were used to determine the effects of changes in miRNA-128-3p and KLHDC8A expression levels on malignant behavior of glioma cells. Rescue experiment was carried out to verify that miRNA-128-3p regulated glioma cell proliferation, apoptosis, invasion and migration by targeting KLHDC8A.
RESULTS:
The expression level of KLHDC8A was significantly increased in high-grade glioma tissue and was closely related to a poor survival outcome of the patients. Overexpression of KLHDC8A promoted glioma cell proliferation, migration and invasion, and miRNA-128-3p overexpression inhibited proliferative and metastatic capacities of glioma cells. Mechanistically, KLHDC8A expression was directly modulated by miRNA-128-3p, which, by targeting KLHDC8A, inhibited malignant behavior of glioma cells.
CONCLUSION
Upregulation of miRNA-128-3p inhibits uncontrolled growth of glioma cells by negatively regulating KLHDC8A expression and its downstream effectors, suggesting that the miRNA-128-3p-KLHDC8A axis may serve as a potential prognostic indicator and a therapeutic target for developing new strategies for glioma treatment.
Humans
;
Apoptosis
;
Cell Line, Tumor
;
Cell Movement
;
Cell Proliferation
;
Gene Expression Regulation, Neoplastic
;
Glioma/pathology*
;
MicroRNAs/metabolism*
;
Up-Regulation
6.Long noncoding RNA LOC646029 functions as a ceRNA to suppress ovarian cancer progression through the miR-627-3p/SPRED1 axis.
Pengfei ZHAO ; Yating WANG ; Xiao YU ; Yabing NAN ; Shi LIU ; Bin LI ; Zhumei CUI ; Zhihua LIU
Frontiers of Medicine 2023;17(5):924-938
Long noncoding RNAs (lncRNAs) play a crucial regulatory role in the development and progression of multiple cancers. However, the potential mechanism by which lncRNAs affect the recurrence and metastasis of ovarian cancer remains unclear. In the current study, the lncRNA LOC646029 was markedly downregulated in metastatic ovarian tumors compared with primary tumors. Gain- and loss-of-function assays demonstrated that LOC646029 inhibits the proliferation, invasiveness, and metastasis of ovarian cancer cells in vivo and in vitro. Moreover, the downregulation of LOC646029 in metastatic ovarian tumors was strongly correlated with poor prognosis. Mechanistically, LOC646029 served as a miR-627-3p sponge to promote the expression of Sprouty-related EVH1 domain-containing protein 1, which is necessary for suppressing tumor metastasis and inhibiting KRAS signaling. Collectively, our results demonstrated that LOC646029 is involved in the progression and metastasis of ovarian cancer, which may be a potential prognostic biomarker.
Humans
;
Female
;
MicroRNAs/metabolism*
;
RNA, Long Noncoding/metabolism*
;
RNA, Competitive Endogenous
;
Cell Line, Tumor
;
Ovarian Neoplasms/genetics*
;
Cell Proliferation/genetics*
;
Gene Expression Regulation, Neoplastic
;
Cell Movement/genetics*
;
Adaptor Proteins, Signal Transducing/metabolism*
7.Jiedu Recipe, a compound Chinese herbal medicine, inhibits cancer stemness in hepatocellular carcinoma via Wnt/β-catenin pathway under hypoxia.
Bing-Jie GUO ; Yi RUAN ; Ya-Jing WANG ; Chu-Lan XIAO ; Zhi-Peng ZHONG ; Bin-Bin CHENG ; Juan DU ; Bai LI ; Wei GU ; Zi-Fei YIN
Journal of Integrative Medicine 2023;21(5):474-486
OBJECTIVE:
Jiedu Recipe (JR), a Chinese herbal remedy, has been shown to prolong overall survival time and decrease recurrence and metastasis rates in patients with hepatocellular carcinoma (HCC). This work investigated the mechanism of JR in HCC treatment.
METHODS:
The chemical constituents of JR were detected using liquid chromatography-mass spectrometry. The potential anti-HCC mechanism of JR was screened using network pharmacology and messenger ribonucleic acid (mRNA) microarray chip assay, followed by experimental validation in human HCC cells (SMMC-7721 and Huh7) in vitro and a nude mouse subcutaneous transplantation model of HCC in vivo. HCC cell characteristics of proliferation, migration and invasion under hypoxic setting were investigated using thiazolyl blue tetrazolium bromide, wound healing and Transwell assays, respectively. Image-iT™ Hypoxia Reagent was added to reveal hypoxic conditions. Stem cell sphere formation assay was used to detect the stemness. Epithelial-mesenchymal transition (EMT) markers like E-cadherin, vimentin and α-smooth muscle actin, and pluripotent transcription factors including nanog homeobox, octamer-binding transcription factor 4, and sex-determining region Y box protein 2 were analyzed using Western blotting and real-time polymerase chain reaction. Western blot was performed to ascertain the anti-HCC effect of JR under hypoxia involving the Wnt/β-catenin pathway.
RESULTS:
According to network pharmacology and mRNA microarray chip analysis, JR may potentially act on hypoxia and inhibit the Wnt/β-catenin pathway. In vitro and in vivo experiments showed that JR significantly decreased hypoxia, and suppressed HCC cell features of proliferation, migration and invasion; furthermore, the hypoxia-induced increases in EMT and stemness marker expression in HCC cells were inhibited by JR. Results based on the co-administration of JR and an agonist (LiCl) or inhibitor (IWR-1-endo) verified that JR suppressed HCC cancer stem-like properties under hypoxia by blocking the Wnt/β-catenin pathway.
CONCLUSION
JR exerts potent anti-HCC effects by inhibiting cancer stemness via abating the Wnt/β-catenin pathway under hypoxic conditions. Please cite this article as: Guo BJ, Ruan Y, Wang YJ, Xiao CL, Zhong ZP, Cheng BB, Du J, Li B, Gu W, Yin ZF. Jiedu Recipe, a compound Chinese herbal medicine, inhibits cancer stemness in hepatocellular carcinoma via Wnt/β-catenin pathway under hypoxia. J Integr Med. 2023; 21(5): 474-486.
Animals
;
Mice
;
Humans
;
Carcinoma, Hepatocellular/genetics*
;
beta Catenin/pharmacology*
;
Liver Neoplasms/genetics*
;
Drugs, Chinese Herbal/therapeutic use*
;
RNA, Messenger/therapeutic use*
;
Cell Line, Tumor
;
Cell Proliferation
;
Cell Movement
;
Gene Expression Regulation, Neoplastic
8.Long non-coding RNA colon cancer-associated transcript 1-Vimentin axis promoting the migration and invasion of HeLa cells.
Zhangfu LI ; Jiangbei YUAN ; Qingen DA ; Zilong YAN ; Jianhua QU ; Dan LI ; Xu LIU ; Qimin ZHAN ; Jikui LIU
Chinese Medical Journal 2023;136(19):2351-2361
BACKGROUND:
Long non-coding RNA colon cancer-associated transcript 1 (CCAT1) is involved in transforming multiple cancers into malignant cancer types. Previous studies underlining the mechanisms of the functions of CCAT1 primarily focused on its decoy for miRNAs (micro RNAs). However, the regulatory mechanism of CCAT1-protein interaction associated with tumor metastasis is still largely unknown. The present study aimed to identify proteome-wide CCAT1 partners and explored the CCAT1-protein interaction mediated tumor metastasis.
METHODS:
CCAT1-proteins complexes were purified and identified using RNA antisense purification coupled with the mass spectrometry (RAP-MS) method. The database for annotation, visualization, and integrated discovery and database for eukaryotic RNA binding proteins (EuRBPDB) websites were used to bioinformatic analyzing CCAT1 binding proteins. RNA pull-down and RNA immunoprecipitation were used to validate CCAT1-Vimentin interaction. Transwell assay was used to evaluate the migration and invasion abilities of HeLa cells.
RESULTS:
RAP-MS method worked well by culturing cells with nucleoside analog 4-thiouridine, and cross-linking was performed using 365 nm wavelength ultraviolet. There were 631 proteins identified, out of which about 60% were RNA binding proteins recorded by the EuRBPDB database. Vimentin was one of the CCAT1 binding proteins and participated in the tumor metastasis pathway. Knocked down vimetin ( VIM ) and rescued the downregulation by overexpressing CCAT1 demonstrated that CCAT1 could enhance tumor migration and invasion abilities by stabilizing Vimentin protein.
CONCLUSION
CCAT1 may bind with and stabilize Vimentin protein, thus enhancing cancer cell migration and invasion abilities.
Humans
;
HeLa Cells
;
RNA, Long Noncoding/metabolism*
;
Cell Line, Tumor
;
Cell Proliferation/genetics*
;
Vimentin/metabolism*
;
MicroRNAs/metabolism*
;
Colonic Neoplasms/genetics*
;
RNA-Binding Proteins/metabolism*
;
Gene Expression Regulation, Neoplastic/genetics*
;
Cell Movement/genetics*
9.USP25 promotes hepatocellular carcinoma progression by interacting with TRIM21 via the Wnt/β-catenin signaling pathway.
Yinghui LIU ; Jingjing MA ; Shimin LU ; Pengzhan HE ; Weiguo DONG
Chinese Medical Journal 2023;136(18):2229-2242
BACKGROUND:
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in the world. The ubiquitin-specific peptidase 25 (USP25) protein has been reported to participate in the development of several cancers. However, few studies have reported its association with HCC. In this study, we aimed to investigate the function and mechanism of USP25 in the progression of HCC.
METHODS:
We analyzed USP25 protein expression in HCC based on The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) database cohorts. Then, we constructed USP25-overexpressing and USP25-knockdown HepG2, MHCC97H, and L-O2 cells. We detected the biological function of USP25 by performing a series of assays, such as Cell Counting Kit-8 (CCK-8), colony formation, transwell, and wound healing assays. Western blotting and quantitative real-time polymerase chain reaction (qRT-PCR) analyses were performed to detect the interaction between USP25 and the Wnt/β-catenin signaling pathway. The relationship between USP25 and tripartite motif-containing 21 (TRIM21) was assessed through mass spectrometry and co-immunoprecipitation (Co-IP) analysis. Finally, we constructed a mouse liver cancer model with the USP25 gene deletion to verify in vivo role of USP25.
RESULTS:
USP25 was highly expressed in HCC tissue and HCC cell lines. Importantly, high expression of USP25 in tissues was closely related to a poor prognosis. USP25 knockdown markedly reduced the proliferation, migration, and invasion of HepG2 and MHCC97H cells, whereas USP25 overexpression led to the opposite effects. In addition, we demonstrated that USP25 interacts with TRIM21 to regulate the expression of proteins related to epithelial-mesenchymal transition (EMT; E-cadherin, N-cadherin, and Snail) and the Wnt/β-catenin pathway (β-catenin, Adenomatous polyposis coli, Axin2 and Glycogen synthase kinase 3 beta) and those of their downstream proteins (C-myc and Cyclin D1). Finally, we verified that knocking out USP25 inhibited tumor growth and distant metastasis in vivo .
CONCLUSIONS
In summary, our data showed that USP25 was overexpressed in HCC. USP25 promoted the proliferation, migration, invasion, and EMT of HCC cells by interacting with TRIM21 to activate the β-catenin signaling pathway.
Animals
;
Mice
;
beta Catenin/genetics*
;
Carcinoma, Hepatocellular/pathology*
;
Cell Line, Tumor
;
Cell Movement/genetics*
;
Cell Proliferation/genetics*
;
Epithelial-Mesenchymal Transition/genetics*
;
Gene Expression Regulation, Neoplastic
;
Liver Neoplasms/pathology*
;
Ubiquitin Thiolesterase/metabolism*
;
Wnt Signaling Pathway/genetics*
10.MiR-3653 blocks autophagy to inhibit epithelial-mesenchymal transition in breast cancer cells by targeting the autophagy-regulatory genes ATG12 and AMBRA1.
Huachen SONG ; Zitong ZHAO ; Liying MA ; Bailin ZHANG ; Yongmei SONG
Chinese Medical Journal 2023;136(17):2086-2100
BACKGROUND:
Metastasis is the main cause of tumor-associated death and mainly responsible for treatment failure of breast cancer. Autophagy accelerates tumor metastasis. In our work, we aimed to investigate the possibility of microRNAs (miRNAs) which participate in the regulation of autophagy to inhibit tumor metastasis.
METHODS:
MiRNA array and comprehensive analysis were performed to identify miRNAs which participated in the regulation of autophagy to inhibit tumor metastasis. The expression levels of miR-3653 in breast cancer tissues and cells were detected by quantitative real-time polymerase chain reaction. In vivo and in vitro assays were conducted to determine the function of miR-3653. The target genes of miR-3653 were detected by a dual luciferase reporter activity assay and Western blot. The relationship between miR-3653 and epithelial-mesenchymal transition (EMT) was assessed by Western blot. Student's t -test was used to analyze the difference between any two groups, and the difference among multiple groups was analyzed with one-way analysis of variance and a Bonferroni post hoc test.
RESULTS:
miR-3653 was downregulated in breast cancer cells with high metastatic ability, and high expression of miR-3653 blocked autophagic flux in breast cancer cells. Clinically, low expression of miR-3653 in breast cancer tissues (0.054 ± 0.013 vs . 0.131 ± 0.028, t = 2.475, P = 0.014) was positively correlated with lymph node metastasis (0.015 ± 0.004 vs . 0.078 ± 0.020, t = 2.319, P = 0.023) and poor prognosis ( P < 0.001). miR-3653 ameliorated the malignant phenotypes of breast cancer cells, including proliferation, migration (MDA-MB-231: 0.353 ± 0.013 vs . 1.000 ± 0.038, t = 16.290, P < 0.001; MDA-MB-468: 0.200 ± 0.014 vs . 1.000 ± 0.043, t = 17.530, P < 0.001), invasion (MDA-MB-231: 0.723 ± 0.056 vs . 1.000 ± 0.035, t = 4.223, P = 0.013; MDA-MB-468: 0.222 ± 0.016 vs . 1.000 ± 0.019, t = 31.050, P < 0.001), and colony formation (MDA-MB-231: 0.472 ± 0.022 vs . 1.000 ± 0.022, t = 16.620, P < 0.001; MDA-MB-468: 0.650 ± 0.040 vs . 1.000 ± 0.098, t = 3.297, P = 0.030). The autophagy-associated genes autophagy-related gene 12 ( ATG12 ) and activating molecule in beclin 1-regulated autophagy protein 1 ( AMBRA1 ) are target genes of miR-3653. Further studies showed that miR-3653 inhibited EMT by targeting ATG12 and AMBRA1 .
CONCLUSIONS
Our findings suggested that miR-3653 inhibits the autophagy process by targeting ATG12 and AMBRA1 , thereby inhibiting EMT, and provided a new idea and target for the metastasis of breast cancer.
Cell Line, Tumor
;
Epithelial-Mesenchymal Transition/genetics*
;
MicroRNAs/metabolism*
;
Autophagy/genetics*
;
Genes, Regulator
;
Gene Expression Regulation, Neoplastic/genetics*
;
Cell Proliferation/genetics*
;
Cell Movement/genetics*
;
Neoplasms/genetics*

Result Analysis
Print
Save
E-mail