1.Artemisia argyi extract subfraction exerts an antifungal effect against dermatophytes by disrupting mitochondrial morphology and function.
Le CHEN ; Yunyun ZHU ; Chaowei GUO ; Yujie GUO ; Lu ZHAO ; Yuhuan MIAO ; Hongzhi DU ; Dahui LIU
Chinese Journal of Natural Medicines (English Ed.) 2024;22(1):47-61
Artemisia argyi (A. argyi), a plant with a longstanding history as a raw material for traditional medicine and functional diets in Asia, has been used traditionally to bathe and soak feet for its disinfectant and itch-relieving properties. Despite its widespread use, scientific evidence validating the antifungal efficacy of A. argyi water extract (AAWE) against dermatophytes, particularly Trichophyton rubrum, Trichophyton mentagrophytes, and Microsporum gypseum, remains limited. This study aimed to substantiate the scientific basis of the folkloric use of A. argyi by evaluating the antifungal effects and the underlying molecular mechanisms of its active subfraction against dermatophytes. The results indicated that AAWE exhibited excellent antifungal effects against the three aforementioned dermatophyte species. The subfraction AAWE6, isolated using D101 macroporous resin, emerged as the most potent subfraction. The minimum inhibitory concentrations (MICs) of AAWE6 against T. rubrum, M. gypseum, and T. mentagrophytes were 312.5, 312.5, and 625 μg·mL-1, respectively. Transmission electron microscopy (TEM) results and assays of enzymes linked to cell wall integrity and cell membrane function indicated that AAWE6 could penetrate the external protective barrier of T. rubrum, creating breaches ("small holes"), and disrupt the internal mitochondrial structure ("granary"). Furthermore, transcriptome data, quantitative real-time PCR (RT-qPCR), and biochemical assays corroborated the severe disruption of mitochondrial function, evidenced by inhibited tricarboxylic acid (TCA) cycle and energy metabolism. Additionally, chemical characterization and molecular docking analyses identified flavonoids, primarily eupatilin (131.16 ± 4.52 mg·g-1) and jaceosidin (4.17 ± 0.18 mg·g-1), as the active components of AAWE6. In conclusion, the subfraction AAWE6 from A. argyi exerts antifungal effects against dermatophytes by disrupting mitochondrial morphology and function. This research validates the traditional use of A. argyi and provides scientific support for its anti-dermatophytic applications, as recognized in the Chinese patent (No. ZL202111161301.9).
Antifungal Agents/chemistry*
;
Arthrodermataceae
;
Artemisia/chemistry*
;
Molecular Docking Simulation
;
Mitochondria
;
Microbial Sensitivity Tests
2.Artemdubinoids A-N: novel sesquiterpenoids with antihepatoma cytotoxicity from Artemisia dubia.
Zhen GAO ; Tianze LI ; Yunbao MA ; Xiaoyan HUANG ; Changan GENG ; Xuemei ZHANG ; Jijun CHEN
Chinese Journal of Natural Medicines (English Ed.) 2023;21(12):902-915
In pursuit of effective agents for hepatocellular carcinoma derived from the Artemisia species, this study built upon initial findings that an ethanol (EtOH) extract and ethyl acetate (EtOAc) fraction of the aerial parts of Artemisia dubia Wall. ex Bess. exhibited cytotoxicity against HepG2 cells with inhibitory rates of 57.1% and 84.2% (100 μg·mL-1), respectively. Guided by bioactivity, fourteen previously unidentified sesquiterpenes, artemdubinoids A-N (1-14), were isolated from the EtOAc fraction. Their structural elucidation was achieved through comprehensive spectroscopic analyses and corroborated by the comparison between the experimental and calculated ECD spectra. Single crystal X-ray diffraction provided definitive structure confirmation for artemdubinoids A, D, F, and H. Artemdubinoids A and B (1-2) represented unique sesquiterpenes featuring a 6/5-fused bicyclic carbon scaffold, and their putative biosynthetic pathways were discussed; artemdubinoid C (3) was a novel guaianolide derivative that might be formed by the [4 + 2] Diels-Alder reaction; artemdubinoids D and E (4-5) were rare 1,10-seco-guaianolides; artemdubinoids F-K (6-11) were chlorine-containing guaianolides. Eleven compounds exhibited cytotoxicity against three human hepatoma cell lines (HepG2, Huh7, and SK-Hep-1) with half-maximal inhibitory concentration (IC50) values spanning 7.5-82.5 μmol·L-1. Artemdubinoid M (13) exhibited the most active cytotoxicity with IC50 values of 14.5, 7.5 and 8.9 μmol·L-1 against the HepG2, Huh7, and SK-Hep-1 cell lines, respectively, which were equivalent to the positive control, sorafenib.
Humans
;
Artemisia/chemistry*
;
Sesquiterpenes/chemistry*
;
Cell Line
;
Hep G2 Cells
;
Crystallography, X-Ray
;
Molecular Structure
3.Corythucha marmorata affects growth and quality of Artemisia argyi.
Zi-Xin WANG ; Hui-Ying WANG ; Chang-Jie CHEN ; Wei-Lin CHEN ; Yu-Huan MIAO ; Da-Hui LIU
China Journal of Chinese Materia Medica 2023;48(19):5162-5171
This study aims to investigate the impact of the invasive pest Corythucha marmorata on the growth and quality of Artemi-sia argyi. The signs of insect damage at the cultivation base of A. argyi in Huanggang, Hubei were observed. The pests were identified based on morphological and molecular evidence. The pest occurrence pattern and damage mechanism were investigated. Electron microscopy, gas chromatography-mass spectrometry(GC-MS), and high performance liquid chromatography(HPLC) were employed to analyze the microstructure, volatile oils, and flavonoid content of the pest-infested leaves. C. marmorata can cause destructive damage to A. argyi. Small decoloring spots appeared on the leaf surface at the initial stage of infestation. As the damage progressed, the spots spread along the leaf veins and aggregated into patches, causing yellowish leaves and even brownish yellow in the severely affected areas. The insect frequently appeared in summer because it thrives in hot dry conditions. After occurrence on the leaves, microscopic examination revealed that the front of the leaves gradually developed decoloring spots, with black oily stains formed by the black excrement attaching to the glandular hairs. The leaf flesh was also severely damaged, and the non-glandular hairs were broken, disor-ganized, and sticky. The content of neochlorogenic acid, cryptochlorogenic acid, isochlorogenic acids A and B, hispidulin, jaceosidin, and eupatilin at the early stage of infestation was significantly higher than that at the middle stage, and the content decreased at the last stage of infestation. The content of eucalyptol, borneol, terpinyl, and caryophyllin decreased in the moderately damaged leaves and increased in the severely damaged leaves. C. marmorata was discovered for the first time on A. argyi leaves in this study, and its prevention and control deserves special attention. The germplasm materials resistant to this pest can be used to breed C. marmorata-resis-tant A. argyi varieties.
Artemisia/chemistry*
;
Plant Breeding
;
Gas Chromatography-Mass Spectrometry
;
Oils, Volatile/analysis*
;
Chromatography, High Pressure Liquid
;
Plant Leaves/chemistry*
4.Genome-wide identification of bZIP family genes and screening of candidate AarbZIPs involved in terpenoid biosynthesis in Artemisia argyi.
Bo-Han CHENG ; Meng-Yue WANG ; Lan WU ; Ran-Ran GAO ; Qing-Gang YIN ; Yu-Hua SHI ; Li XIANG
China Journal of Chinese Materia Medica 2023;48(19):5181-5194
Artemisia argyi is an important medicinal and economic plant in China, with the effects of warming channels, dispersing cold, and relieving pain, inflammation, and allergy. The essential oil of this plant is rich in volatile terpenoids and widely used in moxi-bustion and healthcare products, with huge market potential. The bZIP transcription factors compose a large family in plants and are involved in the regulation of plant growth and development, stress response, and biosynthesis of secondary metabolites such as terpenoids. However, little is known about the bZIPs and their roles in A. argyi. In this study, the bZIP transcription factors in the genome of A. argyi were systematically identified, and their physicochemical properties, phylogenetic relationship, conserved motifs, and promoter-binding elements were analyzed. Candidate AarbZIP genes involved in terpenoid biosynthesis were screened out. The results showed that a total of 156 AarbZIP transcription factors were identified at the genomic level, with the lengths of 99-618 aa, the molecular weights of 11.7-67.8 kDa, and the theoretical isoelectric points of 4.56-10.16. According to the classification of bZIPs in Arabidopsis thaliana, the 156 AarbZIPs were classified into 12 subfamilies, and the members in the same subfamily had similar conserved motifs. The cis-acting elements of promoters showed that AarbZIP genes were possibly involved in light and hormonal pathways. Five AarbZIP genes that may be involved in the regulation of terpenoid biosynthesis were screened out by homologous alignment and phylogenetic analysis. The qRT-PCR results showed that the expression levels of the five AarbZIP genes varied significantly in different tissues of A. argyi. Specifically, AarbZIP29 and AarbZIP55 were highly expressed in the leaves and AarbZIP81, AarbZIP130, and AarbZIP150 in the flower buds. This study lays a foundation for the functional study of bZIP genes and their regulatory roles in the terpenoid biosynthesis in A. argyi.
Gene Expression Profiling
;
Phylogeny
;
Artemisia/genetics*
;
Basic-Leucine Zipper Transcription Factors/metabolism*
;
Terpenes
;
Gene Expression Regulation, Plant
5.Prediction analysis of quality markers and resource evaluation of Artemisiae Argyi Folium based on chemical composition and network pharmacology.
Chang-Jie CHEN ; Hong-Zhi DU ; Yu-Huan MIAO ; Yan FANG ; Ting-Ting ZHAO ; Da-Hui LIU
China Journal of Chinese Materia Medica 2023;48(20):5474-5486
This study is based on ultra-high-performance liquid chromatography(UPLC), gas chromatography-mass spectrometry(GC-MS), and network pharmacology methods to analyze and predict potential quality markers(Q-markers) of Artemisiae Argyi Folium. First, UPLC and GC-MS techniques were used to analyze the content of 12 non-volatile components and 8 volatile components in the leaves of 33 Artemisia argyi germplasm resources as candidate Q-markers. Subsequently, network pharmacology was employed to construct a "component-target-pathway-efficacy" network to screen out core Q-markers, and the biological activity of the markers was validated using molecular docking. Finally, cluster analysis and principal component analysis were performed on the content of Q-markers in the 33 A. argyi germplasm resources. The results showed that 18 candidate components, 60 targets, and 185 relationships were identified, which were associated with 72 pathways related to the treatment of 11 diseases and exhibited 5 other effects. Based on the combination of freedom and component specificity, six components, including eupatilin, cineole, β-caryophyllene, dinatin, jaceosidin, and caryophyllene oxide were selected as potential Q-markers for Artemisiae Argyi Folium. According to the content of these six markers, cluster analysis divided the 33 A. argyi germplasm resources into three groups, and principal component analysis identified S14 as having the highest overall quality. This study provides a reference for exploring Q-markers of Artemisiae Argyi Folium, establishing a quality evaluation system, further studying its pharmacological mechanisms, and breeding new varieties.
Molecular Docking Simulation
;
Network Pharmacology
;
Plant Breeding
;
Chromatography, High Pressure Liquid/methods*
;
Gas Chromatography-Mass Spectrometry
;
Artemisia/chemistry*
;
Drugs, Chinese Herbal/chemistry*
6.Comparison of chemical constituents in Artemisiae Argyi Folium from different Dao-di producing areas based on UPLC and HS-GC-MS.
Qian-Qian WANG ; Rui GUO ; Dan ZHANG ; Yu-Guang ZHENG ; Qian ZHENG ; Long GUO
China Journal of Chinese Materia Medica 2023;48(20):5509-5518
This study aims to compare the chemical constituents in 24 batches of Artemisiae Argyi Folium samples collected from three different Dao-di producing areas(Anguo in Hebei, Nanyang in Henan, and Qichun in Hubei). An ultra-performance liquid chromatography(UPLC) method was established to determine the content of 13 nonvolatile components, and headspace-gas chromatography-mass spectrometry(HS-GC-MS) was employed for qualitative analysis and comparison of the volatile components. The content of phenolic acids in Artemisiae Argyi Folium was higher than that of flavonoids, and the content of nonvolatile components showed no significant differences among the samples from the three Dao-di producing areas. A total of 40 volatile components were identified, and the relative content of volatile components in Artemisiae Argyi Folium was significantly different among the samples from different Dao-di producing areas. The principal component analysis and partial least squares discriminant analysis identified 8 volatile components as the potential markers for discrimination of Artemisiae Argyi Folium samples from different Dao-di producing areas. This study revealed the differences in the chemical composition of Artemisiae Argyi Folium samples from three different Dao-di producing areas, providing analytical methods and a scientific basis for the discrimination and quality evaluation of Artemisia Argyi Folium in different Dao-di producing areas.
Gas Chromatography-Mass Spectrometry
;
Chromatography, High Pressure Liquid/methods*
;
Drugs, Chinese Herbal/chemistry*
;
Flavonoids/analysis*
;
Plant Leaves/chemistry*
;
Artemisia/chemistry*
7.Comparison on volatile components between Artemisiae Verlotori Folium and Artemisiae Argyi Folium based on GC-MS and chemometrics.
Jing DENG ; Ting-Fen WU ; Chu-Chu ZHONG ; Zhi-Guo MA ; Hui CAO ; Ze-Bin LIN ; Ying ZHANG ; Meng-Hua WU
China Journal of Chinese Materia Medica 2023;48(23):6334-6346
Artemisiae Argyi Folium is commonly used in clinical practice. Artemisiae Verlotori Folium, the dried leaves of Artemisia verlotorum, is often used as a folk substitute for Artemisiae Argyi Folium in Lingnan area. In this study, gas chromatography-triple quadrupole mass spectrometry(GC-MS) was used to detect the volatile oil components of 27 samples of Artemisiae Verlotori Folium and 13 samples of Artemisiae Argyi Folium, and the volatile components were compared between the two species. The internal standard method was combined with multi-reaction monitoring mode(MRM) to determine the content of six major volatile components. Hierarchical clustering analysis(HCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA) were carried out for the content data. The results showed that the Artemisiae Argyi Folium samples had higher content and more abundant volatile oils than the Artemisiae Verlotori Folium samples. Artemisiae Argyi Folium mainly had the components with lower boiling points, while Artemisiae Verlotori Folium mainly had the components with higher boiling points. Terpenoids were the main volatile components in Artemisiae Verlotori Folium(mainly sesquiterpenoids) and Artemisiae Argyi Folium(monoterpenoids). In addition, Artemisiae Argyi Folium had higher content of oxygen-containing derivatives than Artemisiae Verlotori Folium. Furthermore, the stoichiometric analysis showed that the two species could be distinguished by both HCA and OPLS-DA, indicating that the volatile components of the two were significantly different. This study can provide a scientific basis for the quality evaluation and data support for the local rational application of Artemisiae Verlotori Folium in Lingnan.
Gas Chromatography-Mass Spectrometry
;
Chemometrics
;
Oils, Volatile
;
Drugs, Chinese Herbal
;
Plant Leaves
;
Artemisia
8.Quality of moxa from Artemisia argyi and A. stolonifera in different storage years based on simultaneous thermal analysis.
Bing YI ; Jia-Qi QIAO ; Li-Chun ZHAO ; Xian-Zhang HUANG ; Da-Hui LIU ; Li ZHOU ; Li-Ping KANG ; Yuan ZHANG
China Journal of Chinese Materia Medica 2023;48(14):3693-3700
The quality of moxa is an important factor affecting moxibustion therapy, and traditionally, 3-year moxa is considered optimal, although scientific data are lacking. This study focused on 1-year and 3-year moxa from Artemisia stolonifera and A. argyi(leaf-to-moxa ratio of 10∶1) as research objects. Scanning electron microscopy(SEM), Van Soest method, and simultaneous thermal analysis were used to investigate the differences in the combustion heat quality of 1-year and 3-year moxa and their influencing factors. The results showed that the combustion of A. stolonifera moxa exhibited a balanced heat release pattern. The 3-year moxa released a concentrated heat of 9 998.84 mJ·mg~(-1)(accounting for 54% of the total heat release) in the temperature range of 140-302 ℃, with a heat production efficiency of 122 mW·mg~(-1). It further released 7 512.51 mJ·mg~(-1)(accounting for 41% of the total heat release) in the temperature range of 302-519 ℃. The combustion of A. argyi moxa showed a rapid heat release pattern. The 3-year moxa released a heat of 16 695.28 mJ·mg~(-1)(accounting for 70% of the total heat release) in the temperature range of 140-311 ℃, with an instantaneous power output of 218 mW·mg~(-1). It further released 5 996.95 mJ·mg~(-1)(accounting for 25% of the total heat release) in the temperature range of 311-483 ℃. Combustion parameters such as-R_p,-R_v, D_i, C, and D_b indicated that the combustion heat quality of 3-year moxa was superior to that of 1-year moxa. It exhibited greater combustion heat, heat production efficiency, flammability, mild and sustained burning, and higher instantaneous combustion efficiency. This study utilized scientific data to demonstrate that A. stolonifera could be used as excellent moxa, and the quality of 3-year moxa surpassed that of 1-year moxa. The research results provide a scientific basis for the in-depth development of A. stolonifera moxa and the improvement of moxa quality standards.
Artemisia
;
Hot Temperature
;
Moxibustion
;
Plant Leaves
9.Anti-inflammatory material basis and mechanism of Artemisia stolonifera based on UPLC-Q-TOF-MS combined with network pharmacology and molecular docking.
Le CHEN ; Yun-Yun ZHU ; Li-Ping KANG ; Chao-Wei GUO ; Yu-Qiao WANG ; Shuang-Ge LI ; Hong-Zhi DU ; Da-Hui LIU
China Journal of Chinese Materia Medica 2023;48(14):3701-3714
This study aimed to explore the anti-inflammatory material basis and molecular mechanism of Artemisia stolonifera based on the analysis of the chemical components in different extracted fractions of A. stolonifera and their antioxidant and anti-inflammatory effects in combination with network pharmacology and molecular docking. Thirty-two chemical components were identified from A. stolonifera by ultra-performance liquid chromatography coupled to tandem quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS). Among them, there were 7, 21 and 22 compounds in water, n-butanol and ethyl acetate fractions, respectively. The antio-xidant capacity of different extracted fractions was evaluated by measuring their scavenging ability against 1,1-diphenyl-2-picrylhydrazyl radical 2,2-diphenyl-1-(2,4,6-trinitrophenyl) hydrazyl(DPPH) and 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonic acid)(ABTS) free radicals and total antioxidant capacity [ferric reducing antioxidant power(FRAP) assay]. The inflammatory model of RAW264.7 cells was induced by lipopolysaccharide(LPS), and the levels of nitrite oxide(NO), tumor necrosis factor-α(TNF-α), interleukin-6(IL-6) in the supernatant and the mRNA expression of related inflammatory factors in cells were used to evaluate the anti-inflammatory effects. The results revealed that ethyl acetate fraction of A. stolonifera was the optimal antioxidant and anti-inflammatory fraction. By network pharmacology, it was found that flavonoids such as rhamnazin, eupatilin, jaceosidin, luteolin and nepetin could act on key targets such as TNF, serine/threonine protein kinase 1(AKT1), tumor protein p53(TP53), caspase-3(CASP3) and epidermal growth factor receptor(EGFR), and regulate the phosphatidylinositol-3-kinase-protein kinase B(PI3K-AKT) and mitogen-activated protein kinase(MAPK) signaling pathways to exert the anti-inflammatory effects. Molecular docking further indicated excellent binding properties between the above core components and core targets. This study preliminarily clarified the anti-inflammatory material basis and mechanism of ethyl acetate fraction of A. stolonifera, providing a basis for the follow-up clinical application of A. stolonifera and drug development.
Antioxidants/chemistry*
;
Molecular Docking Simulation
;
Artemisia
;
Network Pharmacology
;
Phosphatidylinositol 3-Kinases
;
Anti-Inflammatory Agents/chemistry*
;
Drugs, Chinese Herbal/pharmacology*
;
Interleukin-6
10.Comparison of growth and quality of wild and cultivated Artemisia stolonifera.
Shuang-Ge LI ; Ya-Chen ZHAO ; Hui LI ; Xian-Zhang HUANG ; Ting WU ; Hong-Zhi DU ; Da-Hui LIU
China Journal of Chinese Materia Medica 2023;48(14):3722-3729
This paper aims to compare the difference of growth and quality between wild and cultivated Artemisia stolonifera, thereby providing references for further development and utilization of A. stolonifera. The wild and cultivated A. stolonifera from different altitudes were collected, and the agronomic characters, moxa yield, volatile components, flavonoids, and phenolic acids were determined. The results showed that the cultivated species were taller and stronger, with more leaves and branches, than the wild species. The moxa yield and combustion quality of wild products were higher than those of cultivated products. The content of main volatile components in cultivated products was higher than that in wild products. The content of flavonoids and phenolic acids in wild products was higher than that in cultivated products. At high altitude, the ignition performance, combustion persistence, comprehensive combustion performance, and heat release during combustion of the wild and cultivated A. stolonifera. were optimal. At middle altitude, the content of main characteristic volatile components and flavone phenolic acids in the leaves of the cultivated and wild A. stolonifera were the highest. At low altitude, the combustion quality and the content of the above components of the cultivated A. stolonifera decrease significantly. Considering the combustion quality and the content of the internal components of the leaf lint, the middle and high altitude areas are suitable for the artificial cultivation of A. stolonifera.
Artemisia
;
Agriculture
;
Flavonoids
;
Plant Leaves
;
Drugs, Chinese Herbal

Result Analysis
Print
Save
E-mail