1.Dosimetric Impact of Titanium Alloy Implant in Spinal IMRT Plan.
Xiaohui CHEN ; Anjie XU ; Jiayan CHEN ; Weigang HU ; Jiayuan PENG
Chinese Journal of Medical Instrumentation 2023;47(1):110-114
The purpose of this study is to establish and apply a correction method for titanium alloy implant in spinal IMRT plan, a corrected CT-density table was revised from normal CT-density table to include the density of titanium alloy implant. Dose distribution after and before correction were calculated and compared to evaluate the dose deviation. Plans were also copied to a spinal cancer simulation phantom. A titanium alloy fixation system for spine was implanted in this phantom. Plans were recalculated and compared with the measurement result. The result of this study shows that the max dose of spinal cord showed significant difference after correction, and the deviation between calculation results and measurement results was reduced after correction. The method for expanding the range CT-density table, which means that the density of titanium alloy was included, can reduce the error in calculation.
Radiotherapy, Intensity-Modulated/methods*
;
Titanium
;
Radiotherapy Dosage
;
Alloys
;
Radiometry/methods*
;
Radiotherapy Planning, Computer-Assisted/methods*
2.Research status and development of biodegradable zinc alloy as orthopedics implant.
Tianwei ZHANG ; Yuchen LIU ; Weidan WANG ; Dewei ZHAO
Journal of Biomedical Engineering 2023;40(3):589-594
Znic (Zn) alloys with good cytocompatibility and suitable degradation rate have been a kind of biodegradable metal with great potential for clinical applications. This paper summarizes the biological role of degradable Zn alloy as bone implant materials, discusses the mechanical properties of different Zn alloys and their advantages and disadvantages as bone implant materials, and analyzes the influence of different processing strategies (such as alloying and additive manufacturing) on the mechanical properties of Zn alloys. This paper provides systematic design approaches for biodegradable Zn alloys as bone implant materials in terms of the material selection, product processing, structural topology optimization, and assesses their application prospects with a view to better serve the clinic.
Orthopedics
;
Zinc
;
Alloys
;
Dental Materials
;
Prostheses and Implants
3.Theoretical Verification of Dynamic Lumbar Interspinous Process Stabilization Device with Memory Alloys.
Guodong CHEN ; Zhaocheng LI ; Jianwen ZHANG ; Jiao REN
Chinese Journal of Medical Instrumentation 2022;46(1):103-107
To find an effective method of minimally invasive treatment combining prevention and assistance in the middle zone of conservative treatment and fusion surgery for lumbar degenerative diseases, through the clinical effect observation and the advantage and disadvantage comparison of several commonly used lumbar interspinous dynamic stabilization systems, by analyzing the physiological structure, biomechanics and relevant data of lumbar interspinous processes, based on fully understanding of memory alloy materials, a new dynamic lumbar interspinous fixation device with a memory alloy material has been independently designed and researched, which can not only reconstruct the normal biomechanical characteristics of the lumbar spine and satisfy the normal activities of the human spine, but also avoid damage to the original structure and reduce the incidence of postoperative complications. In addition, the device can be used to optimize the current therapeutic methods. According to our research, the dynamic lumbar interspinous process stabilization device with a memory alloy has theoretically achieved satisfactory results, which can be used to overcome the shortcomings of the existing technology and is superior to the current several dynamic lumbar interspinous process stabilization systems.
Alloys
;
Biomechanical Phenomena
;
Humans
;
Lumbar Vertebrae/surgery*
;
Postoperative Complications
;
Prostheses and Implants
;
Spinal Fusion
4.Evolution and development: engine-driven endodontic rotary nickel-titanium instruments.
International Journal of Oral Science 2022;14(1):12-12
Various engine-driven NiTi endodontic files have been indispensable and efficient tools in cleaning and shaping of root canals for practitioners. In this review, we introduce the relative terms and conceptions of NiTi file, including crystal phase composition, the design of the cutting part, types of separation. This review also analysis the main improvement and evolution of different generations of engine-driven nickel-titanium instruments in the past 20 years in the geometric design, manufacturing surface treatment such as electropolishing, thermal treatment, metallurgy. And the variety of motion modes of NiTi files to improve resistance to torsional failure were also discussed. Continuous advancements by the designers, provide better balance between shaping efficiency and resistance to of NiTi systems. In clinical practice an appropriate system should be selected based on the anatomy of the root canal, instrument characteristics, and operators' experience.
Dental Alloys/chemistry*
;
Dental Instruments
;
Equipment Design
;
Nickel/chemistry*
;
Root Canal Preparation
;
Titanium/chemistry*
5.Finite element analyses of retention of removable partial denture circumferential clasps manufactured by selective laser melting.
Ke Nan MA ; Hu CHEN ; Yan Ru SHEN ; Yong Sheng ZHOU ; Yong WANG ; Yu Chun SUN
Journal of Peking University(Health Sciences) 2022;54(1):105-112
OBJECTIVE:
To compare the retentions of different designs of cobalt-chromium (Co-Cr), pure titanium (CP Ti), and titanium alloy (Ti-6Al-4V) removable partial denture (RPD) circumferential clasps manufactured by selective laser melting (SLM) and to analyze the stress distribution of these clasps during the removal from abutment teeth.
METHODS:
Clasps with clasp arm size A (1.9 mm width/1.1 mm thickness at the body and 0.8-taper) or B (1.2 times A) and 0.25 mm or 0.50 mm undercut engagement were modeled on a prepared first premolar die, named as designs A1, A2, A3, and A4, respectively. The density and elastic modulus of SLM-built Co-Cr, CP Ti, and Ti-6Al-4V were measured and given to different groups of clasps. The density, elastic modulus, and Poisson ' s ratio of enamel were given to the die. The control group was the cast Co-Cr clasp with design A1, to which the density and elastic modulus of cast Co-Cr alloy were given. The Poisson's ratio of all metals was 0.33. The initial 5 N dislodging force was applied, and the maximum displacement of the clasp along the insertion path was computed. The load was reapplied with an increment of 5 N than in the last simulation until the clasp was completely dislodged. The retentive force range of different groups of clasps was obtained. The retentive forces of the SLM-built Co-Cr, CP Ti, and Ti-6Al-4V clasps with equivalent computed retentive force range to the control group were validated through the insertion/removal experiment. The von Mises stress distributions of these three groups of SLM-built clasps under 15 N loads were analyzed.
RESULTS:
SLM-built Co-Cr, CP Ti, and Ti-6Al-4V clasps with designs B1 or B2, and Co-Cr clasps with design A2 had higher retentive forces than those of the control group. SLM-built CP Ti and Ti-6Al-4V clasps with design A1 had lower retentive forces than those of the control group. SLM-built Co-Cr clasp with design A1 and SLM-built CP Ti and Ti-6Al-4V clasps with design A2 had equivalent retentive forces to those of the control group. The insertion/removal experiment showed that the measured retentive forces of these three groups of SLM-built clasps were (21.57±5.41) N, (19.75±4.47) N, and (19.32±2.04) N, respectively. No statistically significant measured retentive force difference was found among these three groups of SLM-built clasps (P>0.05). The maximum von Mises stress of these three groups of SLM-built clasps exceeded their responding yield strength except for the Ti-6Al-4V one.
CONCLUSION
SLM-built Co-Cr circumferential clasps had higher retention than CP Ti and Ti-6Al-4V ones with the same clasp arm size and undercut engagement. The retention of SLM-built circumferential clasps could be adjusted by changing the undercut engagement and clasp arm size. If SLM-built circumferential clasps are used in clinical practice, the Ti-6Al-4V clasp with clasp arm size A and 0.50 mm undercut engagement is recommended considering the long-term use of RPD in the patient's mouth.
Chromium Alloys
;
Dental Clasps
;
Denture Retention
;
Denture, Partial, Removable
;
Finite Element Analysis
;
Humans
;
Lasers
;
Titanium
6.Material design and temperature field simulation analysis of tumor radiofrequency ablation needle.
Zile CHEN ; Haipo CUI ; Yingxi LU ; Jingcheng LANG
Journal of Biomedical Engineering 2022;39(5):958-965
To solve the problems of small one-time ablation range and easy charring of the tissue around the electrode associated with the tumor radiofrequency ablation needle, based on the multiphysical field coupling analysis software COMSOL, the effects of needle material, the number of sub needles and the bending angle of sub needles on the ablation effect of radiofrequency ablation electrode needle were studied. The results show that compared with titanium alloy and stainless steel, nickel titanium alloy has better radiofrequency energy transmission efficiency and it is the best material for electrode needle. The number of sub needles has a great influence on the average necrosis depth and the maximum necrosis diameter. Under the same conditions, the more the number of sub needles, the larger the volume of coagulation necrosis area. The bending angle of the needle has a great effect on the maximum diameter of the coagulated necrotic area, but has little effect on the average necrotic depth. Under the same other conditions, the coagulation necrosis area formed by ablation increased with the increase of the bending angle of the sub needle. For the three needles with bending angles of 60 °, 90 ° and 120 ° analyzed in this paper, the one with bending angle of 120 ° can obtain the largest coagulation necrosis area. In general, the design of nickel titanium alloy with 120 ° bending 8-pin is the optimal. The average depth of radiofrequency ablation necrosis area is 32.40 mm, and the maximum necrosis diameter is 52.65 mm. The above optimized design parameters can provide guidance for the structure and material design of tumor radiofrequency ablation needle.
Humans
;
Needles
;
Temperature
;
Catheter Ablation/methods*
;
Necrosis
;
Neoplasms/surgery*
;
Alloys
7.Effects of Heat Treatment Conditions on Shape Memory Recovery of NiTi Self-expanding Vascular Stents.
Yanyan WANG ; Jian LUO ; Yong LI ; Jieyun CHEN ; Jinglong TANG ; Yuanyuan LYU ; Junlei ZHOU
Chinese Journal of Medical Instrumentation 2021;45(2):119-124
Effects of heat treatment conditions (including temperature and time) on the shape memory recovery and corrosion resistance of NiTi self-expanding vascular stents were studied based on working mechanism and clinical use. The
Alloys
;
Corrosion
;
Hot Temperature
;
Materials Testing
;
Stents
;
Surface Properties
;
Temperature
;
Titanium
8.Design and Clinical Application of Split Memory Alloy Sternum Plate.
Yanzhong LIU ; Xinqi HAN ; Lixia SONG ; Cheng WANG ; Yong SHI ; Xiangwen MIAO ; Yan TANG ; Chenglong YUAN ; Jingyuan LI ; Yuehui MA
Chinese Journal of Medical Instrumentation 2021;45(3):288-291
OBJECTIVE:
The design and development of split memory alloy sternum bone plate are discussed, and the effect of split memory alloy sternum bone plate internal fixation in the treatment of sternal fractures are analysed.
METHODS:
The structure of the product is designed according to the anatomy and physiological characteristics of human bones, and the cross section shape of the product is designed according to the cross section shape of human bones. Internal fixation is effective in the treatment of sternal fracture.
RESULTS:
The split memory alloy sternal plate was successfully designed and developed, and all the patients with sternal fractures treated by internal fixation were clinically healed, the hospitalization and fracture healing time were significantly shortened, and no obvious complications occurred.
CONCLUSIONS
The application of split memory alloy sternal plate internal fixation in the treatment of sternal fracture has the advantages of small trauma, simple operation, safety, reliable fixation, good histocompatibility and less complications, and is conducive to promoting fracture healing and respiratory function improvement.
Alloys
;
Bone Plates
;
Fracture Fixation, Internal
;
Fracture Healing
;
Humans
;
Sternum/surgery*
9.Comparative study on the mechanical properties of lower limb arterial stents under various deformation modes.
Tianqi WANG ; Haiquan FENG ; Kun WANG
Journal of Biomedical Engineering 2021;38(2):303-309
Lower extremity movement is a complex and large range of limb movement. Arterial stents implanted in lower extremity are prone to complex mechanical deformation, so the stent is required to have high comprehensive mechanical properties. In order to evaluate the mechanical property of different stents, in this paper, finite element method was used to simulate and compare the mechanical properties of six nitinol stents (Absolute Pro, Complete SE, Lifestent, Protégé EverFlex, Pulsar-35 and New) under different deformation modes, such as radial compression, axial compression/tension, bending and torsion, and the radial support performance of the stents was verified by experiments. The results showed that the comprehensive performance of New stent was better than other stents. Among which the radial support performance was higher than Absolute Pro and Pulsar-35 stent, the axial support performance was better than Complete SE, Lifestent and Protégé EverFlex stent, the flexibility was superior to Protégé Everflex stent, and the torsion performance was better than Complete SE, Lifestent and Protégé Everflex stent. The TTR2 type radial support force tester was used to test the radial support performance of 6 types, and the finite element analysis results were verified. The mechanical properties of the stent are closely related to the structural size. The result provides a reference for choosing a suitable stent according to the needs of the diseased location in clinical applications.
Alloys
;
Femoral Artery
;
Finite Element Analysis
;
Lower Extremity
;
Mechanical Phenomena
;
Prosthesis Design
;
Stents
;
Stress, Mechanical
10.Effects of 3 kinds of processing techniques on the fitness of metal clasp.
Xinping YIN ; Hongbo ZHOU ; Fei YAN ; Xiling WU ; Guofeng WU ; Danlin PANG
Journal of Central South University(Medical Sciences) 2021;46(10):1122-1128
OBJECTIVES:
At present, removable partial denture is still one of the main restoration methods for dentition defects. However, the trend for digital partial denture is becoming more and more obvious in the field of oral repair. However, there are relatively few studies on digital removable partial denture. The aim of this study is to investigate the effects of 3 processing technologies (precision casting, digital cutting, and 3D printing) on the fitness for the clasps of cobalt chromium alloy and pure titanium removable partial denture, and to provide a theoretical basis for the clinical application of digital removable partial denture.
METHODS:
Clasps of Co-Cr alloy and pure titanium were produced by 3 different processing technologies (precision casting, digital cutting, and 3D printing). There are 6 groups, including a casting pure titanium group, a casting cobalt chromium group, a cutting pure titanium group, a cutting cobalt chromium group, a printing pure titanium group, and a printing cobalt chromium group (
RESULTS:
There was no statistical difference in fitness between the casting pure titanium group and the casting cobalt chromium group (
CONCLUSIONS
The cobalt chromium alloy and pure titanium clasps made by precision casting, digital cutting, and 3D printing have good fitness. Under the same process, there is no significant difference between cobalt chromium alloy and pure titanium clasps. The 3D printing pure titanium clasps have better fitness than casting pure titanium and cutting pure titanium clasps, which meet the needs of clinical application.
Chromium Alloys
;
Cobalt
;
Denture, Partial, Removable
;
Titanium

Result Analysis
Print
Save
E-mail