REVIEW

IsomiRs have functional importance

Geok Chin TAN MPath, PhD and Nicholas DIBB* PhD

Department of Pathology, Universiti Kebangsaan Malaysia Medical Centre, Malaysia and *Institute of Reproductive and Developmental Biology, Department of Surgery and Cancer, Imperial College London, United Kingdom

Abstract

Since the inception of deep sequencing, isomiRs are consistently observed to be produced by most miRNA genes in a variety of cell types. IsomiRs appear as a variation in length from the canonical sequence annotated in miRBase, due to an addition or deletion of one or more nucleotides at the 5' or 3' ends or both. As the seed sequence is located at the 5' end of the microRNA, the target mRNA will be theoretically different. Therefore, 5'isomiRs might potentially target a new set mRNA compared to their canonical counterpart. This article gives an overview of investigations that explored the functional potential of isomiRs such as their ability to incorporate into Argonaute protein, the differential expression of isomiRs in various tissue types and cell lines, and the differences of mRNA targets between isomiR and its canonical microRNA. In addition, this article provides a brief introduction of RNA sponges as a potential way to inhibit isomiRs.

Keywords: IsomiRs, microRNA, messenger RNA, molecular, target prediction

INTRODUCTION

MicroRNAs were first discovered in C. *elegans* by Lee *et al.*, (1993)¹ as two overlapping transcripts of lin-4 gene, which are about 22 and 61 nucleotides in length. These transcripts inhibited lin-14 mRNA through complementarity to the 3' untranslated region (UTR). Subsequently, lin-4 and let-7 were found to regulate the timing of C. *elegans* development. MicroRNAs were also identified in humans, fruit flies, chickens, frogs, zebrafish, molluscs, sea urchins and mouse.²⁻⁴

MicroRNAs are about 19-25 nucleotides in length and belong to one of the classes of non-coding RNAs which are functional RNAs that do not translate into protein. Non-coding RNAs consist of transfer RNA (tRNA), ribosomal RNA (rRNA), small nucleolar RNA (snoRNA), microRNA (miRNA), small interfering RNA (siRNAs), small nuclear RNA (snRNA), piwi-interacting RNA (piRNA) and long ncRNA.⁵ So far, based on miRBase database, approximately 1881 pre-miRNAs and 2588 mature human miRNAs have been identified (miRBase, June 2014).^{6,7} MicroRNAs are found to have important post-transcriptional roles in almost every cellular process in eukaryotes, which include the

regulation of embryonic development, signalling pathways, apoptosis, metabolism, organogenesis and involvement in pathological conditions like viral diseases, genetic disorders and cancer. In addition, embryonic stem cell specific microRNA, i.e. miR-302 cluster, has been used to reprogram or facilitate the reprograming of somatic cells to induced pluripotent stem cells. 11-12

Biogenesis of miRNA

MicroRNA genes can be located in various parts of the human genome, i.e., between genes as well as within the intron or exon regions of other genes (Figure 1). The miRNA genes are mostly transcribed into primary miRNA (pri-miRNA) by RNA polymerase II. 13,14 The pri-miRNAs are hundreds to thousands of nucleotides in length and can encode multiple precursor miRNAs, for example the miR-302 cluster (Figure 1).15 The pri-miRNA undergoes processing by Drosha, an RNase III endonuclease.16 Drosha forms a microprocessor complex with DGCR8 (DiGeorge syndrome critical region gene 8), which is called Pasha in Drosophila and PASH-1 in C. elegans. 15,17,18 This complex binds to stem loops within pri-miRNA and can excise and release

Address for correspondence: Associate Professor Dr Tan Geok Chin, Department of Pathology, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia. Email: tan_geok_chin@yahoo.com.

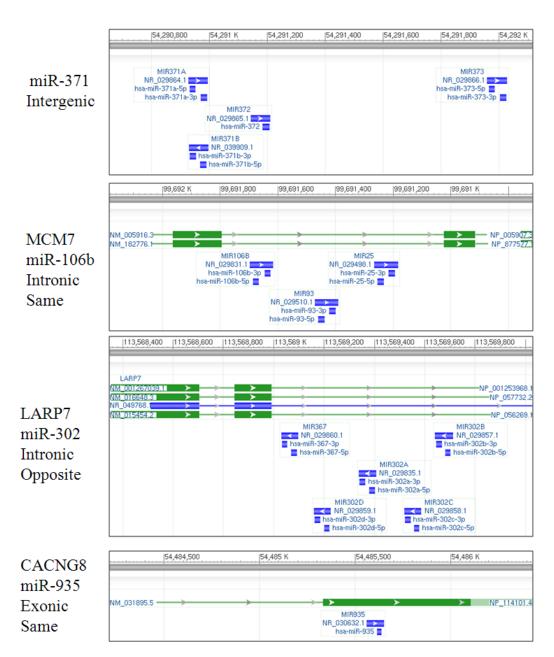


FIG. 1: Examples of location of microRNA genes in human genome. (Reproduced from thesis of Tan GC. Imperial College London 2013)

precursor miRNA (pre-miRNA). 16,19 DGRC8 assists Drosha to cleave approximately 11 bp away from the ssRNA-dsRNA junction. 20 The hairpin of pre-miRNA is about 70 nt in length. Some miRNAs are not dependent upon Droshamediated processing, these include miRNAs called mirtrons that are processed by splicing. 21,22 Subsequently, the pre-miRNA is transported into the cytoplasm by Exportin-5, 23,24 where it is being processed by Dicer (a RNase III endonuclease) resulting in the generation of an approximately 22 nt miRNA-miRNA* duplex. 25,26

Mechanism of target selection

Mature miRNA is incorporated into the RNA-induced silencing complex (RISC) that guides the miRNA towards target mRNAs that lead to reduce protein production, via mechanisms that are still under investigation. Bartel's group found that mRNA destabilization explains most miRNA mediated repression.²⁷

MiRNAs pair with target mRNAs at sites complementary to the miRNA 5' region. Most effective sites map to 3' untranslated regions

8mer

5 '	UACUGAUGAUAGUAACUACCUCU3'	Lin28
3'	AAGAAGGUGUGGAUGGAGA 5'	miR-4458

7mer-A1

```
5'..AGGAUUUUUAUAUAGGAAUGUAG..3' Lin28
||||||
3' UGAGUGGCUGUCCAACUUACAA 5' miR-181c
```

7mer-m8

```
5'..GUUUACAGCAAAAGGCUACCUCA..3' Lin28
|||||||
3' UUGAUACGUUGGAUGAUGGAGA 5' let-7d
```

FIG. 2: Examples of the canonical type of miRNA-mRNA target interaction. Vertical line represents Watson-Crick base pairing.

(3' UTRs) and pair perfectly with the miRNA seed (nucleotides 2–7), with an additional pair at nucleotide 8 and/or an A across from nucleotide 1.^{27,28} The canonical site of target recognition is known as the "seed region" which is located at nucleotides 2 to 7 or 2 to 8 at the 5' end of the miRNA and often has perfect complementarity pairing to the target mRNA²⁸ (Figure 2). In addition, central pairing (nucleotides 4 to 15) has been shown to lead to Argonaute protein 2 (Ago2) mediated target cleavage.²⁹

IsomiRs

The usage of high-throughput deep sequencing has led to the detection of large numbers of miRNAs.⁵ Intriguingly, miRNAs encoded by the same gene frequently displayed variation in length from the canonical sequence annotated in miRBase, due to an addition or deletion of one or more nucleotides at the 5' or 3' ends or both. These variants are termed as isomiRs.³⁰ They are categorised into 5' isomiRs, 3' isomiRs and mixed (Figure 3). 3' isomiRs are

```
hsa-miR-302a-3p
           hsa-miR-302a-5p (302a*)
            UAAACGUGGAUGUACUUGCUUU
            UAAACGUGGAUGUACUUGCUU
          CUUAAACGUGGAUGUACUUGCUU
                                CUUAAACGUGGAUGUACUUGCU
         ACUUAAACGUGGAUGUACUUGCU
            UAAACGUGGAUGUACUUGCUUUGA
         ACUUAAACGUGGAUGUACUUGC
            UAAACGUGGAUGUACUUGCU
5'/Start site>
            UAAACGUGGAUGUACUUGCUUUG
            UAAACGUGGAUGUACUUGCUUUGAAACU
            UAAACGUGGAUGUACUUGCUUUA
                                       5'/Start site
            UAAACGUGGAUGUACUUGCUUUGAAAC
                                        ¥ UAAGUGCUUCCAUGUUUUGGUGA ← 3'/End site
            UAAACGUGGAUGGACTTGCUUU
           UUAAACGUGGAUGUACUUGCUU
            UAAACGUGGAUGUACUUGCUUUGAA
                                           AAGUGCUUCCAUGUUUUGGUGA
```

FIG. 3: Different species of isomiRs, using miR-302a as an example (those that are highlighted in purple represent the canonical microRNA)

more frequently observed than 5' isomiRs.³¹⁻³⁵ This heterogeneity in length is thought to arise in part from imprecise cleavage by Drosha or Dicer.³⁰ The presence of 3' isomiRs are thought to have resulted from trimming, adenylation or uridylation.^{31,36-38} Interestingly, Liu *et al.*, (2011)³⁷ showed that knockdown of *Nibbler* (a 3' to 5' exoribonuclease) was accompanied by loss of some 3' isomiRs.

Some studies suggested that the 3' ends of miRNA extend from the PAZ domain of the Argonaute protein and are therefore available to exonucleolytic attack, 39,40 whereas the 5' ends of miRNAs are buried within the MID domain, hence might be protected.³⁰ This suggests that 5' end of microRNA might be more important and protected from unwanted alteration. On the other hand, Wu et al., (2009)⁴¹ showed that alternative processing of primary miRNA by Drosha and DGCR8 can generate precursor miRNA with or without 5' end variation. Eventually, these precursor miRNAs may undergo 3' end modification which produces mature miRNAs having 5', 3' or mix variations.41 In principle, 5' isomiRs have different seed regions to their canonical miRNA and therefore could have a different subset of target genes. Although miRBase (June 2014) has included isomiRs in their database, miRNAs are still annotated as a single mature miRNA sequence.

IsomiRs have been detected in a variety of cell lines, tissues and cancers such as hESCs, endothelial cells, 293T cells, various mouse tissues, prostate cancer, gastric cancer, breast cancer and leukemic cells.^{5,35,42-48} There are a number of isomiR databases in the web such as miRBase,⁶ YM500,⁴⁹ Hood lab (Institute of System Biology 2012 - http://hood.systemsbiology.net/), miRGator v3.0⁵⁰ and SeqBuster⁵¹ (Table 1).

Functional significance of isomiRs

There have been some concerns that isomiRs are simply sequencing artefacts. However, "spike in" synthetic RNA oligonucleotide experiments indicate that isomiR identification far exceeds error rates. ³¹ In addition, bioinformatics analysis using target prediction program predicted conserved target sites for isomiRs, northern blot study showed isomiRs are differentially expressed in tissue and cell lines, immunoprecipitation study showed isomiRs are capable of incorporation into argonaute proteins and luciferase assay showed isomiRs are functionally different from their canonical microRNA. ³⁵

Target prediction programs

Target prediction programs have been created to attempt to generate predictions of miRNA targets

TABLE 1: List of isomiR databases

No	Name of the database	Web-link	Reference
1	miRBase	http://www.mirbase.org/	Griffith-Jones <i>et al.</i> , 2004 ⁶
2	miRGator v3.0	http://mirgator.kobic.re.kr/	Cho et al., 2013 ⁵⁰
3	SeqBuster	http://code.google.com/p/seqbuster/ (need to download software)	Pantano <i>et al.</i> , 2010 ⁵¹
4	Hood lab	http://hood.systemsbiology.net/cgi- bin/isomir/find.pl	Institute of systems biology (ISB) 2012
5	YM500	http://ngs.ym.edu.tw/ym500/	Cheng et al., 2013 ⁴⁹

based on genome wide computational search for microRNA and mRNA UTR complementary sites. The most significant contribution to target recognition was the identification of Watson-Crick microRNA-mRNA perfect complementarity of 6 to 8 bp at the 5' end of microRNA and 3' UTR of mRNA.^{52,53} As a result, the initial method of target prediction was based on complementarity of the miRNA to the target site and the predicted free energy of the microRNA-mRNA duplex.^{53,54} Subsequently, a new generation of miRNA target prediction programs emerged in 2005 that are based on

more extensive bioinformatics analysis using cross-species comparison, called TargetScan.⁵⁵

In TargetScan, miRNA targets are predicted by searching for Watson-Crick base pairing matches between the seed region and 3' UTRs that are conserved via whole genome alignment. Based on a prediction study, more than 5300 human genes were predicted targets of miRNA, which represented about 20 to 30% of the human gene set.⁵⁵ Figure 4 illustrates the conserved predicted microRNA target sites in the 3' UTR of NCAM2 (Figure 4A) (long red arrows). Intriguingly, there are a few other conserved sites (short yellow

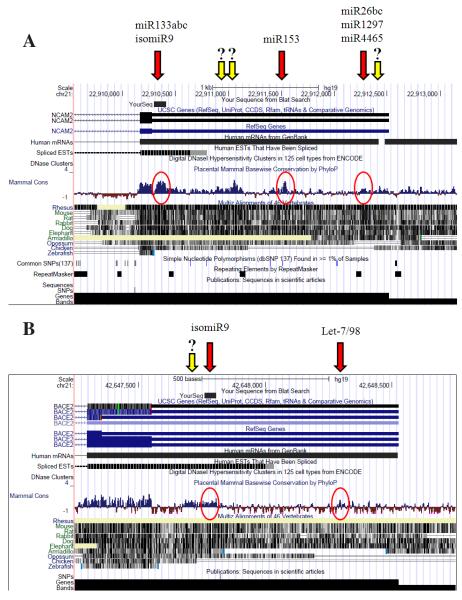


FIG. 4: Conserved miRNA target sites in the 3' UTR of NCAM2 and BACE2. Long red arrows represent known miRNA target sites. Short yellow arrows denote conserved sites that are not known to be a target of any canonical/ annotated miRNA. Reproduced and modified from USCS genome browser.

arrows) that are not predicted target sites of any canonical/ annotated microRNA. These sites could be undiscovered target sites of isomiRs or perhaps targets of RNA binding proteins. Another related example is the BACE2 (Figure 4B), where there are 3 highly conserved sites and one of these is a predicted target site of let-7. Notably, one of the remaining two conserved sites is a target site of isomiR-9 (unpublished data).

There are some miRNA target prediction programs available on the web. These programs differ in their selection criteria like the stringency of seed complementarity and measurement of base pairing stability and selection of different UTR sequence.^{28,56} Different prediction databases may predict different sets of target genes. The differences in prediction might result from the use of different 3' UTR sequence in the prediction programs.²⁸ So far, only a small proportion of these predictions have been experimentally validated. 57-59 Bioinformatics analysis of the microRNAs and isomiRs using Targetscan Human and Targetscan Custom predicts that there are many specific targets of isomiRs and that the percentage of common targets is surprisingly low with an average value of about 22%.35

Differential expression of isomiRs in tissue and cell lines

Based upon sequencing data, a number of groups have reported that isomiR expression patterns differ between cell lines or tissue types and in some cases the changes are as much as ten-fold.^{33,60} IsomiRs were readily detected in a variety of human cell lines and mouse tissue types by northern blotting. Interestingly, the relative ratio of isomiRs encoded by the same microRNA gene varied between cell types.³⁵ This suggests that isomiRs might play different roles or are required to function selectively in different cell types.

Functional analysis of isomiRs

MicroRNAs execute their function by firstly incorporating into Argonaute protein which belongs to a component of RNA-induced silencing complex (RISC) or microRNA ribonucleoprotein complex (miRNP). Subsequently RISC/miRNP will guide the microRNA to the target mRNA, preventing the translation process. By using communoprecipitation testing, it was shown that isomiRs were able to associate with argonaute (Ago) proteins (Ago1 or Ago2). Similarly, a few

other studies have also showed the association of isomiRs with Ago. 5,32,61

Fukunaga and colleagues described an invivo study where Dicer partner proteins may bind to Dicer and generate different isomiRs of a miRNA. Loquacious-PA generates a 21-mer miR-307a and loquacious-PB generates a 23mer miR-307a. Thus altering the Dicer partner proteins changes the choice of the cleavage site, producing isomiRs with different target specificities. Furthermore, the authors found glycerol kinase and taranis were targets of 23-mer miR-307a but not 21-mer miR-307a.62 This finding complements our *in-vitro* study that isomiRs have a different set of mRNA targets (see below). Humphrey et al., (2012)⁶³ has also presented preliminary evidence to indicate that miR-133a and its isomiR have different target specificities in murine cardiomyoctyes.

In our study, we found that miR-367 and its isomiR-367 (3' isomiR) were able to repress PTEN, a predicted target common to both miR-367 (canonical) and isomiR-367. Subsequently, bioinformatics was used to focus on 5' isomiRs that have different targets to their canonical microRNA. Interestingly, bioinformatics show one of the predicted targets of miR-9 (canonical) is CDH1, while its most abundant isomiR-9 targets DNMT3B and NCAM2 instead. Using *in-vitro* luciferase assay, isomiR-9 indeed targets DNMT3B and NCAM2 and has lost its ability to repress CDH1. Seed sequence mutation studies confirmed that the predicted seed target sites were crucial for the recognition of both miRs and isomiRs.35

MicroRNA sponges were first described by Ebert et al., (2007)⁶⁴ and Franco-Zorrilla et al., (2007).65 These sponges are decoy mRNAs that compete with endogenous mRNA for base pairing with miRNAs. The effectiveness of sponges in general is likely to be dependent upon the relative concentration of endogenous miRNA and sponge expression level (Figure 5). In order to reassure that our finding is valid, we constructed two RNA sponge expression vectors that have specific binding site for miR-9 and isomiR-9, respectively. Our RNA sponges contain six repeated binding sites for either miR-9 or isomiR-9. These binding sites have the same sequence as the target sites within the 3'UTRs of CDH1 or DNMT3B. The "isomiR-9 sponge" could specifically sequester isomiR-9 at a better efficiency than the canonical miR-9, which has just one base difference at the 5' end, and *vice-versa*. This observation reassured

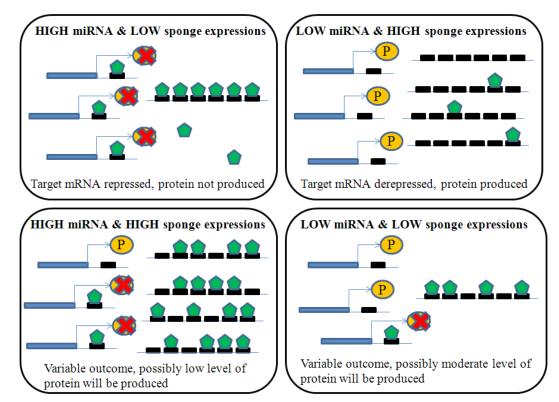


FIG. 5: Sponges compete with target mRNA for binding with miRNA and the various outcomes as a result of the concentration differences between the miRNA and sponge. Long blue bar – target mRNA; short black bar – miRNA binding site; orange oval – protein; green pentagon – endogenous miRNA; red cross – protein not produced; arrow – protein translation. In an environment where there is high level of miRNA concentration but low sponge expression, the most likely outcome is protein will not be produced. Conversely, if there is high sponge expression coupled with a low miRNA concentration, most invariably protein will be produced. The situation becomes unpredictable when there is either high level of both miRNA and sponge or low level of both miRNA and sponge.

that isomiRs can recognise different targets to canonical/ annotated microRNAs.³⁵

Ma and colleagues showed MiR-9 was upregulated in breast cancer cells and repressed CDH1, which promotes cancer cells motility and invasiveness. MiR-9 mediated downregulation of CDH1 is also associated with the activation of vascular endothelial growth factor through the upregulation of beta catenin signaling, which increases tumour angiogenesis. Inhibition of miR-9 by miRNA sponge reduces metastasis formation.⁵⁹ Therefore, miRNA sponge might be a useful research tool for future studies as well as a potential inhibitor of oncomiR.

In conclusion, these findings indicate that a microRNA may not be composed of a single strand of nucleotides, instead it is a group of microRNAs that are very similar but differ only in their length with one or more nucleotides at either or both ends. Thus, the function of microRNAs is very complex.

REFERENCES

- 1. Lee RC, Feinbaum RL, Ambros V. The *C. elegans* heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993; 75(5): 843-54.
- Reinhart BJ, Slack FJ, Basson M, et al. The 21nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 2000; 403(6772): 901-6.
- Pasquinelli AE. MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet. 2012; 13(4): 271-82.
- Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T. Identification of tissuespecific microRNAs from mouse. Curr Biol. 2002; 12(9): 735-9.
- Morin RD, O'Connor MD, Griffith M, et al. Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res. 2008; 18(4): 610-21.
- Griffiths-Jones S. The microRNA Registry. Nucleic Acids Res. 2004; 32(Database issue): D109-11.

 Kozomara A, Griffiths-Jones S. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 2011; 39(Database issue): D152-7.

- Esquela-Kerscher A, Slack FJ. Oncomirs microRNAs with a role in cancer. Nat Rev Cancer. 2006; 6(4): 259-69.
- Kloosterman WP, Plasterk RH. The diverse functions of microRNAs in animal development and disease. Dev Cell. 2006; 11(4): 441-50.
- Shi XB, Tepper CG, deVere White RW. Cancerous miRNAs and their regulation. Cell Cycle. 2008; 7(11): 1529-38.
- Anokye-Danso F, Trivedi CM, Juhr D, et al. Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell. 2011; 8(4): 376-88.
- 12. Tan GC, Dibb NJ. MicroRNA-induced pluripotent stem cells. Malays J Pathol. 2012; 34(2): 167-8.
- Lee Y, Kim M, Han J, et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 2004; 23(20): 4051-60.
- Cai X, Hagedorn CH, Cullen BR. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA. 2004; 10(12): 1957-66.
- Breving K, Esquela-Kerscher A. The complexities of microRNA regulation: mirandering around the rules. Int J Biochem Cell Biol. 2010; 42(8): 1316-29.
- Lee Y, Ahn C, Han J, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003; 425(6956): 415-9.
- Yeom KH, Lee Y, Han J, Suh MR, Kim VN. Characterization of DGCR8/Pasha, the essential cofactor for Drosha in primary miRNA processing. Nucleic Acids Res. 2006; 34(16): 4622-9.
- Han J, Pedersen JS, Kwon SC, et al. Posttranscriptional crossregulation between Drosha and DGCR8. Cell. 2009; 136(1): 75-84.
- Basyuk E, Suavet F, Doglio A, Bordonné R, Bertrand E. Human let-7 stem-loop precursors harbor features of RNase III cleavage products. Nucleic Acids Res. 2003; 31(22): 6593-7.
- Han J, Lee Y, Yeom KH, et al. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell. 2006; 125(5): 887-901.
- Berezikov E, Chung WJ, Willis J, Cuppen E, Lai EC. Mammalian mirtron genes. Mol Cell. 2007; 28(2): 328-36.
- Chan SP, Slack FJ. And now introducing mammalian mirtrons. Dev Cell. 2007; 13(5): 605-7.
- Yi R, Qin Y, Macara IG, Cullen BR. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 2003; 17(24): 3011-6.
- Murchison EP, Hannon GJ. miRNAs on the move: miRNA biogenesis and the RNAi machinery. Curr Opin Cell Biol. 2004; 16(3): 223-9.
- Grishok A, Pasquinelli AE, Conte D, et al. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell. 2001; 106(1): 23-34.

 Ketting RF, Fischer SE, Bernstein E, Sijen T, Hannon GJ, Plasterk RH. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev. 2001; 15(20): 2654-9.

- 27. Eichhorn SW, Guo H, McGeary SE, *et al.* mRNA destabilization is the dominant effect of mammalian microRNAs by the time substantial repression ensues. Mol Cell. 2014; 56(1): 104-15.
- Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009; 136(2): 215-33.
- Shin C, Nam JW, Farh KK, Chiang HR, Shkumatava A, Bartel DP. Expanding the microRNA targeting code: functional sites with centered pairing. Mol Cell. 2010; 38(6): 789-802.
- Neilsen CT, Goodall GJ, Bracken CP. IsomiRsthe overlooked repertoire in the dynamic microRNAome. Trends Genet. 2012; 28(11): 544-9.
- 31. Wyman SK, Knouf EC, Parkin RK, *et al.* Post-transcriptional generation of miRNA variants by multiple nucleotidyl transferases contributes to miRNA transcriptome complexity. Genome Res. 2011; 21(9): 1450-61.
- 32. Lee LW, Zhang S, Etheridge A, *et al*. Complexity of the microRNA repertoire revealed by next-generation sequencing. RNA. 2010; 16(11): 2170-80.
- 33. Burroughs AM, Ando Y, de Hoon MJ, et al. A comprehensive survey of 3' animal miRNA modification events and a possible role for 3' adenylation in modulating miRNA targeting effectiveness. Genome Res. 2010; 20(10): 1398-410.
- 34. Newman MA, Mani V, Hammond SM. Deep sequencing of microRNA precursors reveals extensive 3' end modification. RNA. 2011; 17(10): 1795-803.
- 35. Tan GC, Chan E, Molnar A, *et al.* 5' isomiR variation is of functional and evolutionary importance. Nucleic Acids Res. 2014; 42(14): 9424-35.
- 36. Han BW, Hung JH, Weng Z, Zamore PD, Ameres SL. The 3'-to-5' exoribonuclease Nibbler shapes the 3' ends of microRNAs bound to Drosophila Argonaute1. Curr Biol. 2011; 21(22): 1878-87.
- Liu N, Abe M, Sabin LR, et al. The exoribonuclease Nibbler controls 3' end processing of microRNAs in Drosophila. Curr Biol. 2011; 21(22): 1888-93.
- 38. Heo I, Ha M, Lim J, *et al*. Mono-uridylation of premicroRNA as a key step in the biogenesis of group II let-7 microRNAs. Cell. 2012; 151(3): 521-32.
- Schirle NT, MacRae IJ. The crystal structure of human Argonaute2. Science. 2012; 336(6084): 1037-40.
- 40. Elkayam E, Kuhn CD, Tocilj A, *et al.* The structure of human Argonaute-2 in complex with miR-20a. Cell. 2012; 150(1): 100-10.
- 41. Wu H, Ye C, Ramirez D, Manjunath N. Alternative processing of primary microRNA transcripts by Drosha generates 5' end variation of mature microRNA. Plos One. 2009; 4(10): e7566.
- 42. Bar M, Wyman SK, Fritz BR, *et al.* MicroRNA discovery and profiling in human embryonic stem cells by deep sequencing of small RNA libraries. Stem Cells. 2008; 26(10): 2496-505.
- 43. Kuchenbauer F, Morin RD, Argiropoulos B, et

- *al.* In-depth characterization of the microRNA transcriptome in a leukemia progression model. Genome Res. 2008; 18(11): 1787-97.
- 44. Lipchina I, Elkabetz Y, Hafner M, et al. Genomewide identification of microRNA targets in human ES cells reveals a role for miR-302 in modulating BMP response. Genes Dev. 2011; 25(20): 2173-86.
- 45. Voellenkle C, Rooij Jv, Guffanti A, *et al.* Deep-sequencing of endothelial cells exposed to hypoxia reveals the complexity of known and novel microRNAs. RNA. 2012; 18(3): 472-84.
- Watahiki A, Wang Y, Morris J, et al. MicroRNAs associated with metastatic prostate cancer. PLoS One. 2011; 6(9): e24950.
- Li SC, Liao YL, Ho MR, Tsai KW, Lai CH, Lin WC. miRNA arm selection and isomiR distribution in gastric cancer. BMC Genomics. 2012; 13 Suppl 1: S13.
- Chang HT, Li SC, Ho MR, et al. Comprehensive analysis of microRNAs in breast cancer. BMC Genomics. 2012; 13 Suppl 7: S18.
- Cheng WC, Chung IF, Huang TS, et al. YM500: a small RNA sequencing (smRNA-seq) database for microRNA research. Nucleic Acids Res. 2013; 41(Database issue): D285-94.
- Cho S, Jang I, Jun Y, et al. MiRGator v3.0: a microRNA portal for deep sequencing, expression profiling and mRNA targeting. Nucleic Acids Res. 2013; 41(Database issue): D252-7.
- Pantano L, Estivill X, Martí E. SeqBuster, a bioinformatic tool for the processing and analysis of small RNAs datasets, reveals ubiquitous miRNA modifications in human embryonic cells. Nucleic Acids Res. 2010; 38(5): e34.
- Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB. Prediction of mammalian microRNA targets. Cell. 2003; 115(7): 787-98.
- Rajewsky N, Socci ND. Computational identification of microRNA targets. Dev Biol. 2004; 267(2): 529-35.
- Rajewsky N. microRNA target predictions in animals. Nat Genet. 2006; 38 Suppl: S8-13.
- Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005; 120(1): 15-20.
- Ritchie W, Flamant S, Rasko JE. Predicting microRNA targets and functions: traps for the unwary. Nat Methods. 2009; 6(6): 397-8.
- Rosa A, Spagnoli FM, Brivanlou AH. The miR-430/427/302 family controls mesendodermal fate specification via species-specific target selection. Dev Cell. 2009; 16(4): 517-27.
- Barroso-delJesus A, Lucena-Aguilar G, Sanchez L, Ligero G, Gutierrez-Aranda I, Menendez P. The Nodal inhibitor Lefty is negatively modulated by the microRNA miR-302 in human embryonic stem cells. FASEB J. 2011; 25(5): 1497-508.
- Ma L, Young J, Prabhala H, et al. miR-9, a MYC/ MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol. 2010; 12(3): 247-56.
- Fernandez-Valverde SL, Taft RJ, Mattick JS. Dynamic isomiR regulation in Drosophila development. RNA. 2010; 16(10): 1881-8.

- Cloonan N, Wani S, Xu Q, et al. MicroRNAs and their isomiRs function cooperatively to target common biological pathways. Genome Biol. 2011; 12(12): R126.
- Fukunaga R, Han BW, Hung JH, Xu J, Weng Z, Zamore PD. Dicer partner proteins tune the length of mature miRNAs in flies and mammals. Cell. 2012; 151(3): 533-46.
- Humphreys DT, Hynes CJ, Patel HR, et al. Complexity of murine cardiomyocyte miRNA biogenesis, sequence variant expression and function. PLoS One. 2012; 7(2): e30933.
- Ebert MS, Neilson JR, Sharp PA. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods. 2007; 4(9): 721-6.
- Franco-Zorrilla JM, Valli A, Todesco M, et al. Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet. 2007; 39(8): 1033-7.