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Abstract

Since the inception of deep sequencing, isomiRs are consistently observed to be produced by most
miRNA genes in a variety of cell types. IsomiRs appear as a variation in length from the canonical
sequence annotated in miRBase, due to an addition or deletion of one or more nucleotides at the
5" or 3’ ends or both. As the seed sequence is located at the 5° end of the microRNA, the target
mRNA will be theoretically different. Therefore, 5’ isomiRs might potentially target a new set mRNA
compared to their canonical counterpart. This article gives an overview of investigations that explored
the functional potential of isomiRs such as their ability to incorporate into Argonaute protein, the
differential expression of isomiRs in various tissue types and cell lines, and the differences of
mRNA targets between isomiR and its canonical microRNA. In addition, this article provides a

brief introduction of RNA sponges as a potential way to inhibit isomiRs.
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INTRODUCTION

MicroRNAs were first discovered in C. elegans by
Lee et al., (1993)" as two overlapping transcripts
of lin-4 gene, which are about 22 and 61
nucleotides in length. These transcripts inhibited
lin-14 mRNA through complementarity to the 3’
untranslated region (UTR). Subsequently, lin-4
and let-7 were found to regulate the timing of
C. elegans development. MicroRNAs were also
identified in humans, fruit flies, chickens, frogs,
zebrafish, molluscs, sea urchins and mouse.>*
MicroRNAs are about 19-25 nucleotides
in length and belong to one of the classes of
non-coding RNAs which are functional RNAs
that do not translate into protein. Non-coding
RNASs consist of transfer RNA (tRNA), ribosomal
RNA (rRNA), small nucleolar RNA (snoRNA),
microRNA (miRNA), small interfering RNA
(siRNAs), small nuclear RNA (snRNA), piwi-
interacting RNA (piRNA) and long ncRNA.> So
far, based on miRBase database, approximately
1881 pre-miRNAs and 2588 mature human
miRNAs have been identified (miRBase, June
2014).57 MicroRNAs are found to have important
post-transcriptional roles in almost every
cellular process in eukaryotes, which include the

regulation of embryonic development, signalling
pathways, apoptosis, metabolism, organogenesis
and involvement in pathological conditions like
viral diseases, genetic disorders and cancer.®'* In
addition, embryonic stem cell specific microRNA,
i.e. miR-302 cluster, has been used to reprogram
or facilitate the reprograming of somatic cells to
induced pluripotent stem cells.!!"!?

Biogenesis of miRNA

MicroRNA genes can be located in various parts
of the human genome, i.e., between genes as
well as within the intron or exon regions of other
genes (Figure 1). The miRNA genes are mostly
transcribed into primary miRNA (pri-miRNA)
by RNA polymerase I1.'*!* The pri-miRNAs are
hundreds to thousands of nucleotides in length
and can encode multiple precursor miRNAs, for
example the miR-302 cluster (Figure 1).!5 The
pri-miRNA undergoes processing by Drosha,
an RNase III endonuclease.'® Drosha forms a
microprocessor complex with DGCR8 (DiGeorge
syndrome critical region gene 8), which is
called Pasha in Drosophila and PASH-1 in C.
elegans.'>'""® This complex binds to stem loops
within pri-miRNA and can excise and release
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FIG. 1: Examples of location of microRNA genes in human genome. (Reproduced from thesis of Tan GC. Impe-

rial College London 2013)

precursor miRNA (pre-miRNA).!% DGRCS8
assists Drosha to cleave approximately 11 bp
away from the ssSRNA-dsRNA junction.?® The
hairpin of pre-miRNA is about 70 nt in length.
Some miRNAs are not dependent upon Drosha-
mediated processing, these include miRNAs
called mirtrons that are processed by splicing.?'-**
Subsequently, the pre-miRNA is transported into
the cytoplasm by Exportin-5,232* where it is being
processed by Dicer (a RNase III endonuclease)
resulting in the generation of an approximately
22 nt miRNA-miRNA* duplex.?2¢
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Mechanism of target selection

Mature miRNA is incorporated into the RNA-
induced silencing complex (RISC) that guides
the miRNA towards target mRNAs that lead
to reduce protein production, via mechanisms
that are still under investigation. Bartel’s group
found that mRNA destabilization explains most
miRNA mediated repression.?’

MiRNAs pair with target mRNAs at sites
complementary to the miRNA 5’ region. Most
effective sites map to 3’ untranslated regions



IsomiRs
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FIG. 2: Examples of the canonical type of miRNA-mRNA target interaction. Vertical line represents Watson-
Crick base pairing.

(3’ UTRs) and pair perfectly with the miRNA
seed (nucleotides 2—7), with an additional pair at
nucleotide 8 and/or an A across from nucleotide
1.272% The canonical site of target recognition is

IsomiRs

The usage of high-throughput deep sequencing
has led to the detection of large numbers of

known as the “seed region” which is located at
nucleotides 2 to 7 or 2 to 8 at the 5’ end of the
miRNA and often has perfect complementarity
pairing to the target mRNA? (Figure 2). In
addition, central pairing (nucleotides 4 to 15)
has been shown to lead to Argonaute protein 2
(Ago2) mediated target cleavage.”

hsa-miR-302a-5p (302a%*)

UAAACGUGGAUGUACUUGCUUU
UAAACGUGGAUGUACUUGCUU
CUUARACGUGGAUGUACUUGCUU
CUUARACGUGGAUGUACUUGCU
ACUUAAACGUGGAUGUACUUGCU
UAAACGUGGAUGUACUUGCUUUGA
ACUUAAACGUGGAUGUACUUGC
UAAACGUGGAUGUACUUGCU
5’/Start site® yaaACGUGGAUGUACUUGCUUUG

UAAACGUGGAUGUACUUGCUUUGAAACU

UARAACGUGGAUGUACUUGCUUUA

UAAACGUGGAUGUACUUGCUUUGAARAC

UARACGUGGAUGGACTTGCUUU
UUAAACGUGGAUGUACUUGCUU
UAAACGUGGAUGUACUUGCUUUGAA

miRNAs.’ Intriguingly, miRNAs encoded by
the same gene frequently displayed variation in
length from the canonical sequence annotated
in miRBase, due to an addition or deletion of
one or more nucleotides at the 5” or 3’ ends or
both. These variants are termed as isomiRs.*
They are categorised into 5’ isomiRs, 3’
isomiRs and mixed (Figure 3). 3’ isomiRs are

hsa-miR-302a-3p

<€ 3’'/[End site

5’/Start site

UAAGUGCUUCCAUGUUUUGGUGA _, _ .
vaaGuGcuuccavcuuuuceuc € 3 /End site
AAGUGCUUCCAUGUUUUGGUGA

5’ CCACCACUUAAACGUGGAUGUACUUGCUUUGAAACUARAGAAGUAAGUGCUUCCAUGUUUUGGUGAUGG 3

FIG. 3: Different species of isomiRs, using miR-302a as an example (those that are highlighted in purple represent

the canonical microRNA)
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more frequently observed than 5° isomiRs.3!-**
This heterogeneity in length is thought to arise
in part from imprecise cleavage by Drosha or
Dicer.*® The presence of 3’ isomiRs are thought
to have resulted from trimming, adenylation
or uridylation.’'363% Interestingly, Liu et al.,
(2011)* showed that knockdown of Nibbler (a
3’ to 5’ exoribonuclease) was accompanied by
loss of some 3’ isomiRs.

Some studies suggested that the 3’ ends of
miRNA extend from the PAZ domain of the
Argonaute protein and are therefore available
to exonucleolytic attack,*** whereas the 5” ends
of miRNAs are buried within the MID domain,
hence might be protected.’® This suggests that 5
end of microRNA might be more important and
protected from unwanted alteration. On the other
hand, Wu et al., (2009)*' showed that alternative
processing of primary miRNA by Drosha
and DGCRS8 can generate precursor miRNA
with or without 5° end variation. Eventually,
these precursor miRNAs may undergo 3’ end
modification which produces mature miRNAs
having 5°, 3’ or mix variations.*! In principle,
5’ isomiRs have different seed regions to their
canonical miRNA and therefore could have
a different subset of target genes. Although
miRBase (June 2014) has included isomiRs in
their database, miRNAs are still annotated as a
single mature miRNA sequence.

TABLE 1: List of isomiR databases
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IsomiRs have been detected in a variety of
cell lines, tissues and cancers such as hESCs,
endothelial cells, 293T cells, various mouse
tissues, prostate cancer, gastric cancer, breast
cancer and leukemic cells.>34248  There are a
number of isomiR databases in the web such
as miRBase,* YM500,* Hood lab (Institute
of System Biology 2012 - http://hood.
systemsbiology.net/), miRGator v3.0%° and
SeqBuster®! (Table 1).

Functional significance of isomiRs

There have been some concerns that isomiRs are
simply sequencing artefacts. However, “spike
in” synthetic RNA oligonucleotide experiments
indicate that isomiR identification far exceeds
error rates.’' In addition, bioinformatics
analysis using target prediction program
predicted conserved target sites for isomiRs,
northern blot study showed isomiRs are
differentially expressed in tissue and cell lines,
immunoprecipitation study showed isomiRs
are capable of incorporation into argonaute
proteins and luciferase assay showed isomiRs
are functionally different from their canonical
microRNA.*

Target prediction programs

Target prediction programs have been created to
attempt to generate predictions of miRNA targets

No Name of the Web-link Reference
database
1 miRBase http://www.mirbase.org/ Griffith-Jones et

2 miRGator v3.0

3 SeqBuster

4 Hood lab

5 YMS500

http://mirgator.kobic.re.kr/

http://code.google.com/p/seqbuster/
(need to download software)

http://hood.systemsbiology.net/cgi-
bin/isomir/find.pl

http://ngs.ym.edu.tw/ym500/

al., 2004°
Cho et al., 2013%

Pantano er al.,
2010

Institute of
systems biology
(ISB) 2012

Cheng et al.,
2013%
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based on genome wide computational search for
microRNA and mRNA UTR complementary
sites. The most significant contribution to
target recognition was the identification of
Watson-Crick microRNA-mRNA perfect
complementarity of 6 to 8 bp at the 5 end of
microRNA and 3” UTR of mRNA.> As a
result, the initial method of target prediction was
based on complementarity of the miRNA to the
target site and the predicted free energy of the
microRNA-mRNA duplex.’*** Subsequently,
a new generation of miRNA target prediction
programs emerged in 2005 that are based on

IsomiRs

more extensive bioinformatics analysis using
cross-species comparison, called TargetScan.>

In TargetScan, miRNA targets are predicted by
searching for Watson-Crick base pairing matches
between the seed region and 3° UTRs that are
conserved via whole genome alignment. Based
on a prediction study, more than 5300 human
genes were predicted targets of miRNA, which
represented about 20 to 30% of the human gene
set.>® Figure 4 illustrates the conserved predicted
microRNA target sites in the 3> UTR of NCAM2
(Figure 4A) (long red arrows). Intriguingly, there
are a few other conserved sites (short yellow
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FIG. 4: Conserved miRNA target sites in the 3’ UTR of NCAM2 and BACE2. Long red arrows represent
known miRNA target sites. Short yellow arrows denote conserved sites that are not known to be a target
of any canonical/ annotated miRNA. Reproduced and modified from USCS genome browser.
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arrows) that are not predicted target sites of any
canonical/ annotated microRNA. These sites
could be undiscovered target sites of isomiRs
or perhaps targets of RNA binding proteins.
Another related example is the BACE2 (Figure
4B), where there are 3 highly conserved sites and
one of these is a predicted target site of let-7.
Notably, one of the remaining two conserved
sites is a target site of isomiR-9 (unpublished
data).

There are some miRNA target prediction
programs available on the web. These programs
differ in their selection criteria like the stringency
of seed complementarity and measurement of
base pairing stability and selection of different
UTR sequence.”*¢ Different prediction databases
may predict different sets of target genes. The
differences in prediction might result from the use
of different 3 UTR sequence in the prediction
programs.?® So far, only a small proportion of
these predictions have been experimentally
validated.’”® Bioinformatics analysis of the
microRNAs and isomiRs using Targetscan
Human and Targetscan Custom predicts that there
are many specific targets of isomiRs and that the
percentage of common targets is surprisingly
low with an average value of about 22%.%

Differential expression of isomiRs in tissue
and cell lines

Based upon sequencing data, a number of
groups have reported that isomiR expression
patterns differ between cell lines or tissue types
and in some cases the changes are as much as
ten-fold.**%° IsomiRs were readily detected in
a variety of human cell lines and mouse tissue
types by northern blotting. Interestingly, the
relative ratio of isomiRs encoded by the same
microRNA gene varied between cell types.®
This suggests that isomiRs might play different
roles or are required to function selectively in
different cell types.

Functional analysis of isomiRs

MicroRNAs execute their function by firstly
incorporating into Argonaute protein which
belongs to acomponent of RNA-induced silencing
complex (RISC) or microRNA ribonucleoprotein
complex (miRNP). Subsequently RISC/miRNP
will guide the microRNA to the target mRNA,
preventing the translation process. By using co-
immunoprecipitation testing, it was shown that
isomiRs were able to associate with argonaute
(Ago) proteins (Ago1 or Ago2).** Similarly, a few
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other studies have also showed the association
of isomiRs with Ago.>2¢!

Fukunaga and colleagues described an in-
vivo study where Dicer partner proteins may
bind to Dicer and generate different isomiRs of
a miRNA. Loquacious-PA generates a 21-mer
miR-307a and loquacious-PB generates a 23-
mer miR-307a. Thus altering the Dicer partner
proteins changes the choice of the cleavage
site, producing isomiRs with different target
specificities. Furthermore, the authors found
glycerol kinase and taranis were targets of
23-mer miR-307a but not 21-mer miR-307a.%
This finding complements our in-vitro study that
isomiRs have a different set of mRNA targets
(see below). Humphrey et al., (2012)% has also
presented preliminary evidence to indicate that
miR-133a and its isomiR have different target
specificities in murine cardiomyoctyes.

In our study, we found that miR-367 and its
isomiR-367 (3’ isomiR) were able to repress
PTEN, a predicted target common to both miR-
367 (canonical) and isomiR-367. Subsequently,
bioinformatics was used to focus on 5’ isomiRs
that have different targets to their canonical
microRNA. Interestingly, bioinformatics show
one of the predicted targets of miR-9 (canonical)
is CDH1, while its most abundant isomiR-9
targets DNMT3B and NCAM?2 instead. Using
in-vitro luciferase assay, isomiR-9 indeed targets
DNMT3B and NCAM?2 and has lost its ability to
repress CDH1. Seed sequence mutation studies
confirmed that the predicted seed target sites
were crucial for the recognition of both miRs
and isomiRs.*

MicroRNA sponges were first described by
Ebert et al., (2007)* and Franco-Zorrilla et
al., (2007).% These sponges are decoy mRNAs
that compete with endogenous mRNA for base
pairing with miRNAs. The effectiveness of
sponges in general is likely to be dependent
upon the relative concentration of endogenous
miRNA and sponge expression level (Figure 5).
In order to reassure that our finding is valid,
we constructed two RNA sponge expression
vectors that have specific binding site for miR-9
and isomiR-9, respectively. Our RNA sponges
contain six repeated binding sites for either
miR-9 or isomiR-9. These binding sites have
the same sequence as the target sites within the
3’UTRs of CDHI or DNMT3B. The “isomiR-9
sponge” could specifically sequester isomiR-9
at a better efficiency than the canonical miR-9,
which has just one base difference at the 5’
end, and vice-versa. This observation reassured
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FIG. 5: Sponges compete with target mRNA for binding with miRNA and the various outcomes as a result
of the concentration differences between the miRNA and sponge. Long blue bar — target mRNA;

short black bar — miRNA binding site; orange oval —

protein; green pentagon — endogenous miRNA; red

cross — protein not produced; arrow — protein translation. In an environment where there is high level of
miRNA concentration but low sponge expression, the most likely outcome is protein will not be produced.
Conversely, if there is high sponge expression coupled with a low miRNA concentration, most invariably
protein will be produced. The situation becomes unpredictable when there is either high level of both
miRNA and sponge or low level of both miRNA and sponge.

that isomiRs can recognise different targets to
canonical/ annotated microRNAs.*

Ma and colleagues showed MiR-9 was
upregulated in breast cancer cells and repressed
CDHI1, which promotes cancer cells motility and
invasiveness. MiR-9 mediated downregulation of
CDH1 is also associated with the activation of
vascular endothelial growth factor through the
upregulation of beta catenin signaling, which
increases tumour angiogenesis. Inhibition of
miR-9 by miRNA sponge reduces metastasis
formation.”® Therefore, miRNA sponge might
be a useful research tool for future studies as
well as a potential inhibitor of oncomiR.

In conclusion, these findings indicate that a
microRNA may not be composed of a single
strand of nucleotides, instead it is a group of
microRNAs that are very similar but differ only
in their length with one or more nucleotides
at either or both ends. Thus, the function of
microRNAs is very complex.
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