ORIGINAL ARTICLE

SURVEILLANCE FOR SARCOCYSTOSIS IN TIOMAN ISLAND, MALAYSIA

Husna Maizura AM¹, Khebir V¹, Chong CK¹, Azman Shah AM², Azri A³, Lokman Hakim S⁴

ABSTRACT

In October 2011, the National International Health Regulations (IHR) 2005 Focal Point for Malaysia received notification from the United States' Centers for Disease Control and Prevention (CDC) of a probable Sarcocystis outbreak amongst 23 travellers from six countries who had vacationed on Tioman Island between June and August 2011. The Ministry of Health, Malaysia (MOH) in collaboration with the Department of Veterinary Services, Malaysia (DVS) conducted a cross sectional study in November 2011 to determine the presence of Sarcocystosis among humans, animals and in the environment in Tioman Island. Epidemiological investigations conducted involved a community health survey of 44 residents in Kampung Salang, Tioman and review of outpatient attendance cards for suspected or confirmed cases of Sarcocystosis. Twenty-eight fresh stool samples were collected and sent to the National Public Health Laboratory (NPHL) for detection of Sarcocystis oocysts using fluorescence microscopy. Water samples taken from 27 water sampling points around the island were processed and analysed under the fluorescence microscope using ultraviolet (UV) light at the Institute for Medical Research (IMR) to detect the presence of Sarcocystis sporocyst. DVS collected 84 faecal samples from four types of domesticated animals and then analysed them at the Veterinary Services Centre in Tioman Island for Sarcocystis oocysts and other parasitic ova and cysts using qualitative Floatation Technique. The results showed that Sarcocystis was not present in humans, animals and in the environment in Tioman Island during the study period. Further surveillance among humans, wildlife and the environment is needed to determine Sarcocystis endemicity in Tioman Island.

Key words: Surveillance, Sarcocystosis, Sarcocystis, Malaysia, epidemic reports, Tioman Island.

INTRODUCTION

Sarcocystosis is a zoonosis caused by infection of the intracellular protozoan parasite requisite two-host life cycle on the prey-predator host relationship, Sarcocystis spp^{1.} Humans can present with two types of Sarcocystis infection, namely intestinal and muscular Sarcocystosis¹. Intestinal Sarcocystosis are acquired when humans eat raw or undercooked meat and serve as the definitive hosts to the Sarcocystis parasite. In this instance, the infections are often asymptomatic and clear spontaneously. Muscular Sarcocystosis infections are acquired when humans act as an accidental host by ingesting sporocysts or infective oocysts in contaminated food or water¹. In this case, humans are dead-end intermediate hosts and the infections resulted in formation of sarcocysts in tissues¹.

The prevalence of Sarcocystosis in the world is low with fewer than 100 confirmed cases reported in the literature¹. Most of the cases reported were incidental findings in asymptomatic persons¹. Sarcocystis infection has been reported from tropical or sub-tropical countries, especially in Asia and Southeast Asia¹. Cases have also been reported from Africa,

Europe, the United States, Central and South America¹. In Malaysia, the prevalence rate of human intestinal Sarcocystosis is unknown². However, muscular Sarcocystosis has been reported as an incidental finding from autopsied or biopsied materials from 11 local cases since 1975². In 1978, a seroepidemiological survey found that 19.7% of 243 persons in West Malaysia antibodies to Sarcocystis³. However, seropositivity for Sarcocystis antibodies could not differentiate between muscular or intestinal Sarcocystosis³. In 1999, an outbreak of acute eosinophilic myositis attributed to Sarcocystosis was reported involving seven out of 15 American military personnel who underwent an operation in rural West Malaysia⁴. Symptoms in five of the cases were mild to moderate and self-limited, while one case with laboratory abnormalities was asymptomatic⁴. Only the index case was reported with persistent symptoms for more than 5 years despite treatment⁴.

As the prevalence of infection is low with mostly asymptomatic or mild and self-limiting presentations, there is no specific ongoing surveillance programme for human Sarcocystosis in Malaysia. On 31 October 2011, multiple sites from the Geosentinel, the surveillance program

¹Disease Control Division, Ministry of Health, Malaysia.

²Veterinary Regional Laboratory, Kuantan, Pahang.

³Biosecurity and SPS Management Division, Department of Veterinary Services, Malaysia.

⁴Public Health Department, Ministry of Health, Malaysia.

of the International Society of Travel Medicine and the United States Centers for Disease Control and Prevention (CDC), reported a cluster of approximately 23 cases of probable *Sarcocystis* infection in travellers from six countries who returned from vacation on Tioman Island between June and August 2011⁵. In a subsequent report, 32 symptomatic cases were detected but only two cases were confirmed as Sarcocystosis from muscle biopsy⁶. All cases had fever, myalgia or musculoskeletal complaints, and eosinophilia, whilst some had diarrhoea initially and have improved either from a self-limiting disease or symptomatic treatment⁵.

METHODOLOGY

Tioman Island lies some 56km off the east coast of Peninsular Malaysia in the South China Sea and is about 38km in length and 19km at its widest point⁷. The island is accessible by boat from jetties in Mersing, Johor and Tanjong Gemok, Pahang and by air from airports in Subang, Kuala Lumpur and Seletar, Singapore⁷. The island has a population of about 3,000 residents in nine kampungs or villages. The only available road at Tioman Island is from the main village, Kampung Tekek to Kampung Juara while the other villages are only accessible by boat. Tioman Island is a popular tourist destination with an average of 2,000 tourists staying on the island during peak seasons between March to July every year⁸. There are about 158 hotels, resorts or chalets and about 80 smaller food outlets that cater to tourists around the island⁸. The food premises in Tioman Island obtained their food supplies from mainland distributors in Mersing, Johor and Kuantan, Pahang⁸. Most of the residents of the island are fishermen or employees in the hospitality industry. During the Northeast monsoon season between November and February every year, there is limited activity on the island with most of the resorts being closed to tourists and the local residents travelling to the mainland for other activities8. Following notification by CDC, Ministry of Health, Malaysia (MOH) collaborated with the Department of Veterinary Services, Malaysia (DVS) in November 2011 to carry out a cross sectional study to determine whether Sarcocystosis is present among the human and animal population and the existence of the organism in the environment in Tioman Island. The study methods are as follows:

Epidemiological investigations

Community health survey

Since most of the affected travellers in this

outbreak had stayed and eaten in Kampung Salang in Tioman Island, a community health survey was conducted in Kampung Salang from 9 to 18 November 20118. The target population was all residents in Kampung Salang whilst households were sampled. During the period of the survey, there were 210 eligible persons including all persons residing in Kampung Salang, while children who attended boarding schools on the mainland were excluded8. A house to house survey was conducted and the residents were interviewed face to face using a structured questionnaire. Information gathered from the questionnaire included demographic data. medical history and history of food consumption⁸. Fresh stool samples were collected and sent to the National Public Health Laboratory (NPHL) in Sungai Buloh, Selangor for detection of Sarcocystis oocysts using fluorescence microscopy⁸.

Review of cases

Majority of the island population seek health and medical services from the Tekek health clinic while others sought treatment at the nearby district hospital located on the mainland (Mersing Hospital)⁸. All outpatient attendance cards from 1 January 2010 to 31 October 2011 at the health clinic and hospital were reviewed⁸. Case definitions were developed to classify cases as a suspect or confirmed case of Sarcocystosis as follows: (a) suspect case - a person who presented with diarrhea or myalgia, or (b) confirmed case - a person who presented with diarrhea or myalgia and positive stool for Sarcocystis oocyst by fluorescence microscopy (intestinal Sarcocystosis)⁸. Detailed information of patients who fit the case definitions was recorded in a format which included demographic data, onset of illness, symptoms and signs, and investigation⁸. laboratory Laboratory investigation for diarrhoea cases at the health facilities were reviewed for protozoa⁸.

Environmental water sampling

Environmental assessment was conducted in Tioman Island which included water supply storage, distribution and sanitary conditions. Site visits were made to identify the possible sources of water supply source contamination. The main water supply system on the island is via Gravity Feed System (GFS) and tube wells managed by the local authority. Some residents have direct well tubing from GFS or ground water to their homes. Altogether, water samples were taken from 27 water sampling points source of water supply and reticulation systems around the island, namely from Kampung Tekek (3 sampling points), Kampung Salang (6 sampling points), Kampung Salang (6 sampling points), Kampung

Mukut (2 sampling points), Kampung Genting (3 sampling points), Kampung Paya (2 sampling points), Kampung Air Batang (2 sampling points) and from the main resort on the island (6 sampling points)9. In-situ physical examination of water samples, including turbidity and colilert test, was carried out9. For every sampling point, 50-100 litres of water were sampled and processed using the ultrafiltration machine for 2 hours⁹. The machine filtered water using a hemofilter which filters particles more than 50 kilodalton such as parasitic ova, trophozoites, cysts and oocysts⁹. This process was followed by backwashing method to produce 250 millilitres of processed water samples for analysis in the laboratory at the Institute for Medical Research (IMR) in Kuala Lumpur⁹.

At the IMR, 100 millilitres was taken from each sample to be processed and analysed microscopically while the remaining sample was kept for testing of other pathogens in the future9. The processed water samples were concentrated via the centrifuge method and divided into two parts (Sample A and B)9. Sample A was analysed using direct smear microscopy with jodine staining to detect any ova, trophozoites, cysts and oocysts9. Subsequently, the slide was viewed the fluorescence microscope ultraviolet (UV) light to detect Sarcocystis sporocyst. Further analysis was done using Trichrome and Modified Ziehl Neelsen staining to detect presence of coccidian protozoa especially Cryptosporidium sp. and Isospora belli. Sample B underwent concentration method through sedimentation to improve the probability of detection of parasites and then analysed using similar methods to sample A⁹.

Animal surveillance

DVS collected faecal samples from domesticated animals (cats, cattle, dogs and goats) from six villages in Tioman Island from 21 to 24 November 2011¹⁰. The animal faecal samples were then analysed for *Sarcocyst* oocysts and other parasitic *ova* and *cysts* using qualitative Floatation Technique at the Veterinary Services Centre in Tioman Island¹⁰.

RESULTS

Epidemiological investigations

Community health survey

Due to the monsoon season, only 15 households with 44 persons were available for interview while the rest have moved temporarily to the mainland. Majority of the residents were male

(77%) and 55% were between 21 to 40 years old (Table 1). Most of the residents worked in the hospitality industry as restaurant workers (46%), chalet operators or workers (14%) and cooks (11%)⁸. The main food consumed by the residents were chicken (91%), beef (80%) and mutton (23%) respectively⁸. All meat was well cooked before consumption⁸. The residents obtained their meat and chicken from food suppliers from mainland. The meat and poultry were ferried to Tioman Island in frozen form and distributed to food operators and household by local distributors⁸. There was no history of consumption of wildlife or exotic animals⁸. None of the 44 residents interviewed were symptomatic for Sarcocystosis from September to October 20118. A total of 28 stool samples were collected and all were negative for presence of Sarcocystis oocysts by fluorescence microscopy⁸.

Table 1. Demography of respondents in Kampung Salang

Variable	n (%)
Gender	
Male	34 (77)
Female	10 (23)
Age Groups (Years)	
< 20	9 (20)
21-40	24 (55)
41-60	11 (25)

Review of cases

There were a total of 8,523 outpatient attendances at the Tekek health clinic in 20108. Whilst from January to October 2011, a total of 7,934 attendees received outpatient treatment at the clinic⁸. Overall the attendance due to diarrhoea was low at the clinic comprising 205 (0.02%) and 89 (0.01%) cases respectively for 2010 and 20118. Review of the outpatient attendance at Tekek health clinic till October 2011 found 116 myalgia cases⁸. Laboratory investigation was not conducted for the diarrhea and myalgia cases at the health clinic. Review of the cases from Tioman Island who presented at the nearby district hospital found only 11 cases of myalgia and diarrhea during the period of 2010 till October 2011⁸. Laboratory investigation was conducted for the diarrhoea cases at the hospital. None of the stool samples for the cases were positive for protozoa⁸.

Environmental water sampling

The main source of water supply for the GFS in Tioman is from an uphill river that has been designated as a protected area (human residence or activity is not allowed upstream from the source)9. The resort operators and residents received their water supply from GFS or individual tube wells⁹. Results of the interview with the residents found that only boiled water is used for consumption⁹. Observation during sampling found a footpath for jungle trekkers along the river and some leakages in the piping system at several locations⁹. All of the 27 water samples at source and distribution sites showed high turbidity and were found to be positive for total coliforms while 93% of the water samples were positive for E. coli9. Direct smear and fluorescence microscopy analysis of all 27 water samples were negative for *Sarcocystis* oocysts⁹. However, ova and cysts of other parasites such as *Giardia spp*, *Ascaris lumbricoides*, unidentified cysts, ova and trophozoites were detected in small amounts (low concentration) in several samples⁹.

Animal surveillance

A total of 84 animal faecal samples collected proportionate to the number of domesticated animals on the island $(Table\ 2)^{10}$. All 84 animal faecal samples were negative for *Sarcocystis* oocysts by floatation technique¹⁰. However, several other parasites were detected from the samples $(Table\ 3)^{10}$.

Table 2. Distribution of animal faecal samples by village in Tioman Island

Villages	Cat	Cattle	Goat	Dog
Tekek	48	6	1	-
Salang	9	-	-	-
Mukut	1	3	4	-
Paya	8	2	-	-
Juara	-	6	-	-
Air Batang	-	-	-	2
Total	66	11	5	2

Table 3. Results of floatation test for parasitology on animal faecal samples

Animal (no. of faecal samples)	Ova and cysts detected	n (%)
Cat (n=66)	Physaloptera	3 (4)
	Ancylostoma	57 (86)
	Toxocara cati	29 (44)
	Toxoplasma gondii	3 (4)
Cattle (n=11)	Strongyle	1 (9)
	Strongyloides	1 (9)
Goat (n=5)	Strongyle	2 (40)
	Strongyloides	1 (20)
	Oocyst (Eimeria)	1 (20)
Dog (n=2)	Nil	Nil

DISCUSSION

According to available literature, human Sarcocystis infection is low and mostly

asymptomatic¹. In this study, none of the respondents were symptomatic or positive for Sarcocystosis oocyst. A possible reason is because the sample size is too small to reveal any significant findings, whereby only 21% of the

residents were available for interview during that particular time. Other possible reasons include the criteria for case definition used in the study is not specific enough and of the different time frame involved, since the CDC cases were reported in June-August, whilst collected samples for this study were from October. Despite the low number of respondents, the study was able to collect 63% of stool samples⁸. The study also found that the local food culture did not include wildlife as part of the diet and all meat was well cooked before consumption⁸.

Based on the presenting symptoms of prominent muscle pain, mild diarrhoea and fever, the returning travellers could have had both intestinal and muscular Sarcocystosis infections. The confirmatory test for this study used stool samples for oocysts for detection of acute phase of intestinal Sarcocystosis infection. When human serve as dead-end host for non-human Sarcocystis spp, diagnosis is made by finding sarcocysts in tissue specimens (muscular Sarcocystosis). As such, the findings of this study cannot be with the cases reported GeoSentinel, which was histologically diagnosed from muscle biopsy, which is muscular Sarcocystosis.

Microscopic analysis of all 27 water samples was negative for *Sarcocystis* oocyst⁹. This could mean that the oocysts were either not present or present in very low concentrations because of the sampling period during the monsoon season (dilution factor). However, the study found evidence of environmental and faecal contamination in the water reticulation system as shown by high total coliform and *E.coli* levels as well as several other parasitic ova and cysts⁹.

Results of faecal floatation test for 84 faecal animal samples (cats, cattle, dogs and goats) as conducted by DVS were negative for *Sarcocystis* oocyst¹⁰. The animal reservoir in Malaysia is unknown at this time, but a study by Kan in 1991 reported that the human muscular Sarcocystosis in Malaysia is a zoonotic infection acquired by contamination of food or drink with *Sarcocystis* shed by definitive hosts, such as domestic cat, dog or reticulated python². Further study is recommended to detect *Sarcocystis* presence in wildlife in Tioman Island.

Sarcocystosis is a self-limiting disease with currently no vaccine or specific treatment. Health education is the most important aspect of prevention. Providing continuous health education to the local population and travellers to follow good personal, food and water hygiene is the standard and effective practice to prevent

most infectious diseases. Following the survey, several health education activities have been conducted in Tioman Island. The local authorities have taken further measures to ensure safe drinking water is available on the island.

CONCLUSION

The surveillance studies in Tioman were not able to detect *Sarcocystis* infection in humans, animals or in the environment during the study period. The study was also unable to ascertain the possibility of endemicity among the population. Negative findings might be explained by the small sample size and different time periods of investigations. Further surveillance among humans, wildlife and the environment, preferably during the period of June to August, is needed to determine *Sarcocystis* endemicity in Tioman.

ACKNOWLEDGMENT

We would like to thank the Director-General of Health, Malaysia for his permission to publish this paper. We would like to express our appreciation to the Director-General of Veterinary Services, Malaysia for his support in conducting the study. We would also like to thank the teams from the Ministry of Health, Malaysia and the Department of Veterinary Services, Malaysia, especially the Pahang State Health Department, the Pahang State Department of Veterinary Services, the Epidemic Intelligence Programme (EIP) of the Ministry of Health, Malaysia, the Environmental Health Research Centre, the Institute for Medical Research (EHRC), the National Public Health Laboratory (NPHL), the Veterinary Regional Laboratory, Kuantan, Pahang and the respondents of the study.

REFERENCES

- 1. Fayer R. Sarcocystis spp. in human infections. *Clin Microbiol Rev.* 2004; **17**(4): 894-902.
- Kan SP, Pathmanathan R. Review of Sarcocystosis in Malaysia. Southeast Asian J Trop Med Pub Hth. 1991; 22(Suppl): 129-34.
- 3. Thomas V, Dissanaike AS. Antibodies to Sarcocystis in Malaysians. *Transactions Royal Society Trop Med and Hyg.* 1978; **72**(3): 303-6.

- 4. Arness MK, Brown JD, Dubey JP, Neafie RC, Granstrom DE. An outbreak of acute eosinophilic myositis attributed to human Sarcocystis parasitism. *Am J Trop Med Hyg*. 1999; **61**(4): 548-53.
- ProMed-mail. Sarcocystosis, Human -Malaysia: Tioman Island. Available from: http://www.promedmail.org/direct.php?id= 20111031.3240 (accessed 30 November 2011).
- Centers for Disease Control and Prevention Morbidity and Mortality Weekly Report. Notes from the field: acute muscular Sarcocystosis among returning travelers -Tioman Island, Malaysia 2011. MMWR 2012; 61(02): 37-8.
- 7. Pahang Tourism Action Council. Tioman Island. Available from: http://www.tourismpahang.com/destination/view.cfm?ID=AB1B35EE-21BA-435C-89C8F64DC11835CF (accessed 2 April 2012).
- 8. Fadzilah K, Rosemawati A, Ahmad Faudzi MY et al. EIP Malaysia Team Report. Active surveillance of Sarcocystis in Tioman Island. Ministry of Health, Malaysia, 2011.
- Nik Muhammad Nizam NH, Muhammad Amir K. Laporan persampelan air bagi penyiasatan kes wabak Sarcocystis di Pulau Tioman dari 11-18 November 2011. Environmental Health Research Centre, Institute for Medical Research, Ministry of Health Malaysia, 2012.
- 10. Azri A, Azman Shah AM, Zaiha D et al. Laporan program survelan Sarcocystis di Pulau Tioman pada 21 hingga 24 November 2011. Department of Veterinary Services, Malaysia, 2012.