## ORIGINAL ARTICLE

# SUBURBAN BREASTFED INFANTS IN KLANG VALLEY ARE AT HIGHER RISK OF DIOXINS TOXICITY

## Mohd Hasni Jaafar

Environmental Health Unit, Department of Community Health, National University of Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia.

#### ABSTRACT

Dioxins are a most toxic compound ever studied by human until today. Their significant health effects involved all ranges of age, including infants due to exposure to contaminated breast milk. The objective of the study was to appraise the status of dioxin contamination in breast milk among postnatal mothers live in urban and suburban areas in Klang Valley. It was conducted as a cross sectional study involving 101 postnatal mothers who came for their infant second hepatitis B vaccination. The samples were analysed using High Resolution Gas Chromatography (HRGC) following the USEPA Method 8290. About 70.3% of the samples were found detected with dioxin congeners. More suburban mothers have positive breast milk dioxins compared to urban mothers, 100.0% and 67.0% respectively. Significant associated factors include high fat daily intake (p=0.013), high milk daily intake (p=0.044), high meat daily intake (p=0.001), body mass index more than  $30 \text{ kg/m}^2$  (p=0.005), and body fat % of more than 26% (p=0.046). In conclusion, amount daily intake of fat diet, meat, milk, body mass index and body fat are significant associated factors for the present of dioxins in breast milk among postnatal mothers in Klang Valley. More suburban mothers contain dioxins in their breast milk, which poses higher risk of health problems among their infants. A comprehensive study need to be conducted and regular followup need to be established in monitoring the future severity of maternal breast milk contamination to ensure the health of the next generations.

Keywords: dioxins, breast milk, suburban, urban, postnatal mothers

## INTRODUCTION

Dioxins are among the most toxic chemical compound produced as the result of human activities such as industrial by-products<sup>1,2</sup>, wastes<sup>3,4</sup>, agricultural uncontrolled burning<sup>5,6</sup>, traffic emission<sup>7</sup>, and incineration<sup>8,9</sup>. Due to its high lipophilic properties, after being released into the environment, the compound is able to contaminate the ambient air, surface water bodies, soil and later bioaccumulate in our food chain 10,11. Dioxins exposure appear to disrupt the physiological function of the immune<sup>12, 13</sup>. hormone<sup>14,15</sup>, reproductive<sup>15,16</sup> and nervous<sup>17,18</sup> systems of human beings. More seriously, they also capable of affecting fetus growth 19,20 and development<sup>21,22</sup>, cognitive and learning abilities of growing children<sup>23</sup>.

Human breast milk was found not spare from being contaminated by this compound. Studies have shown high concentration of dioxins were detected in mothers' milk in many countries<sup>24, 25, 26, 27, 28</sup>. This carcinogen class A compound poses dangerous consequences to those growing breastfed infants.

There were very few studies that been carried out in Malaysia and published. One study on oil palm soils found a very high concentration of dioxin especially those areas closed to major roads or industrial parks<sup>29</sup>. One study in northern of Peninsular Malaysia obtained the dioxins breast milk concentrations from 3.4 to 24 pgTEQs/g lipid

weight which were exceeded the standard<sup>30</sup>. The objectives of this study were to compare the breast milk dioxins concentrations between urban and suburban postnatal mothers in Klang Valley, together with their predisposing factors.

## **MATERIAL AND METHODS**

The study was conducted using as a cross sectional study design with the collaboration of local health office in the year 2000. The study participants consisted of 101 breastfeeding mothers (91 from urban and 10 from suburban). Inclusion criteria comprise that the mothers are healthy without any chronic diseases, in the postnatal period between the 2<sup>nd</sup> and 6<sup>th</sup> week, and aged between 18 to 45year-old. Participants were chosen using purposive sampling among those mothers who came to selected health clinic for their infant Hepatitis B second dose vaccination. About 5 to 10mls of breast milk been collected and kept in a sterile universal bottle and stored under - 20° C until analysed. Other information like food habits (24 hours dietary recall) and anthropometric measurement were collected using a standardised questionnaire.

All 17 congeners of dioxins in each sample were quantified by High Resolution Gas Chromatography (HRGC) at an accredited Doping Control Centre using analytical USEPA Method 8290. Statistical analyses were performed using Statistic Packages for Social Sciences (SPSS) for tests of means, and ttest with p value of less than 0.05 as the significant limit.

## **RESULTS**

From 101 breast milk samples analysed, 71 (70.3%) samples were found contaminated with dioxins. The prevalence of suburban mother's breast milk contamination with dioxins was found higher than urban mothers, 100.0% and 67.0% respectively. Suburban areas were those households located in the vicinity of Klang Valley.

The mean for dioxins in breast milk for urban mothers was 0.06 (SD  $\pm$  0.13) pg/gram fat with maximum value of 0.68 pg/gram fat milk; and for suburban mothers was 0.19 pg/gram fat with maximum value of 0.29 pg/gram fat milk (Table

1). However, both were still below the maximum allowable limit by USFDA (1.0 pg I-TEQ/gram fat) and far below to another study done in Penang and Kedah<sup>30</sup>.

About four mothers took more than 60 grams of fat per day and they were found to have a higher mean of 0.23 ( $\pm 0.30$ ) pg I-TEQ dioxins / gram fat milk. This was significantly higher compared to mothers who took less fat per day (p<0.05). Similarly, higher daily intake of milk (p<0.05) and meat (p<0.01) products found to be associated with higher breast milk dioxin levels.

Respondents with their body mass index of  $\geq 30 \text{kg/m}^2$  were found to have a higher dioxins mean concentration of 0.18 ( $\pm 0.23$ ) pg I-TEQ/gram compared to those with the index less than 30 (p<0.01). The study also found that those participants with body fat percentages of 26% or more, have a significant higher dioxin level in breast milk (p<0.05) compared to those with lesser body fat.

Table 1. Level of Dioxins in Breast Milk According to Respondents Characteristics

| Variables                              | Dioxin Level (pg I-TEQ/g) |                   |
|----------------------------------------|---------------------------|-------------------|
|                                        | Arithmetic mean (± SD)    | Significant level |
| Location                               |                           |                   |
| Urban                                  | $0.06 (\pm 0.13)$         |                   |
| Suburban                               | 0.19 (± 0.10)             |                   |
| Daily fat intake > 60 gram             | $0.23~(\pm~0.30)$         | p = 0.013*        |
| High daily milk intake                 | 0.09 (± 0.16)             | p = 0.044*        |
| High daily meat intake                 | 0.11 (± 0.17)             | p = 0.001**       |
| Body mass index $\ge 30 \text{kg/m}^2$ | $0.18~(\pm~0.23)$         | p = 0.005**       |
| Body fat ≥ 26%                         | 0.09 (± 0.16)             | p = 0.046*        |

<sup>\*</sup> p < 0.05; \*\*p < 0.01

Calculation for an average daily intake for breastfed infants was based on the assumption of infant body weight of 5 kilograms and consumed about 700 millilitre (22.4gm fat) of breast milk per day. For breast-fed urban motherhood infants and suburban mother infants, their average daily intake values were 0.27 and 0.85 pg I-TEQ/kg/day respectively. Suburban infants exposed to three times higher of the risks of dioxin intake compared to urban infants. Fortunately, both values were lesser than the tolerable daily intake (WHO), which is 1 to 4 pg I-TEQ/kg/day.

### DISCUSSION

To measure a status of dioxin contamination in a population, biological monitoring such as fatty tissue, blood, serum, red blood cell or breast milk has usually been chosen. In this study, breast milk sampling being done because it is not invasive,

cheap, easily done and convenience of the participants. Breast milk is a good medium because its fat content suitable for laboratory analyses. Serum has lesser fat content and this may lower the dioxin level below true value<sup>31</sup>.

Quantifying of dioxins in breast milk has two advantages, first it uses to measure the exposure of the mother to dioxins, secondly to show the level of dioxin contamination into the breast-fed infant. The infant may also expose to dioxins during antenatal periods through the placental circulation into a fetus blood system.

The means of dioxins in breast milk in urban and suburban areas in the Klang Valley were very much low compared to other similar study before<sup>30</sup>. There was a significant relationship between high dietary fat content, eat milk and meat every day with the dioxin concentration in breast milk<sup>32</sup>, 33,34,35

This study found that those participants with body mass index of  $30\text{kg/m}^2$  or more will have higher breast milk dioxin concentration. Together with that, participants with body fat percentage of 26 or more will also have higher dioxin level in their breast milk. Similarly, those with more fat body have higher breast milk dioxins found by other studies<sup>36, 37</sup>.

## CONCLUSION

Even though there was evidence of breast milk contamination with dioxins in Kalng Valley, it was still at an early stage with very low concentration of dioxins. The identified associated factors are poor diet and excessive body fat. It is recommended that dioxin contamination should be further investigated at high risk areas in a bigger population regularly. In addition, even the level was low, the adverse health effect was still uncertain because of its ability to cause toxic effect at multiple threshold level including at a low dose of exposure.

## **REFERENCES**

- Lu M, Wang G, Zhang Z, and Su Y. Characterization and inventory of PCDD/F emissions from the ceramic industry in China. Environmental Science & Technology 2012;46(7):4159-4165.
- 2 Ortuno N, Lundstedt S, and Lundin L. Emissions of PBDD/Fs, PCDD/Fs and PBDEs from flame-retarded high-impact polystyrene under thermal stress. Chemosphere 2015; 123:64-70.
- Fuentes MJ, Font R, Gomez-Rico MF, and Molto J. Multivariant statistical analysis of PCDD/Fs in sewage sludges from different areas of the Valencian Community (Spain). Chemosphere 2007; **67**(7): 1423-1433.
- 4 Huwe JK and Archer JC. Dioxin congener pattern in commercial catfish from the United States and the Indication of Mineral clays as the potential source. Food Additives & Contaminants. Part A. Chemistry, analysis, control, exposure & Risk assessment 2013;30(2):331-338.
- 5 Ren M, Tang YH, Peng PA, and Cai Y. PCDD/Fs in Air and Soil around an E-waste Dismantling Area with Open Burning of Insulated Wires in South China. Bulletin of Environmental Contamination and Toxicology 2015;94(5):647-652.

- 6 Gullett BK, Tabor D, Bertrand A, and Touati A. Quality control for sampling of PCDD/PCDF emissions from open combustion sources. Chemosphere 2013;93(3):494-498.
- 7 Rahman MM, Kim KH, Brown RJ, Bae IS, and Park CD. PCDD and PCDF concentrations in a traffic tunnel environment. The Science of The Total Environment 2014;15(493):773-780.
- 8 Zhou H, Meng A, Long Y, Li Q, and Zhang Y. A review of dioxin-related substances during municipal solid waste incineration. Waste Management 2015; 36:106-118.
- 9 Yang J, Yan M, Li X, Chen T, Lu S, Yan J, and Buekens A. Influence of temperature and atmosphere on polychlorinated dibenzo-p-dioxins and dibenzofurans desorption from waste incineration fly ash. Environmental Technology 2015;36(6):760-766.
- 10 Rose M, Fernandes A, Mortimer D, and Baskaran C. Contamination of fish in UK fresh water systems: risk assessment for human consumption. Chemosphere 2014;122:183-189.
- 11 Planche C, Ratel J, Mercier F, Blinet P, Debrauwer L, and Engel E. Assessment of comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry based methods for investigating 206 dioxin-like micropollutants in animal-derived food matrices. Journal of Chromatography A 2015; 1(1392):74-81.
- 12 Quintana FJ, and Sherr DH. Aryl hydrocarbon receptor control of adaptive immunity. Pharmacological Reviews 2013;65(4):1148-1161.
- 13 Gascon M, Morales E, Sunyer J, and Vrijheid M. Effects of persistent organic pollutants on the developing respiratory and immune system: a systemic review. Environment International 2013;52:51-65.
- 14 Xu P, Lou X, Ding G, Shen H, Wu L, Chen Z, Han J, Han G, and Wang X. Association of PCB, PBDE and PCDD/F body burdens with hormone levels for children in an e-waste dismantling area of Zhejiang Province, China. The Science of The Total Environment 2014;15 (499): 55-61.

- 15 Piasecka-Srader J, Kolomycka A, Nynca A, and Ciereszko RE. Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin and phytoestrogen genistein on the activity and the presence of steroidogenic enzyme proteins in cultured granulosa cells of pigs. Animal Reproduction Science 2014;148:3-4.
- 16 Hutz RJ, Carvan MJ, Larson JK, Liu Q, Stelzer RV, King-Heiden TC, Baldridge MG, Shahnoor N, and Julien K. Familiar and novel reproductive endocrine distruptors: xenoestrogens, dioxins and nanoparticles. Current Trends in Endocrinology 2014;7:111-112.
- Marinkovic N, Pasalic D, Ferencak G, Grskovic B, and Stavljenic RA. Dioxins and human toxicity. Arh Hig Rada Toksikologi 2010;61(4):445-453.
- Akahoshi E, Yoshimura S, and Ishihara-Sugano M. Over-expression of AhR (aryl hydrocarbon receptor) induces neural differentiation of Neuro2a cells: Neurotoxicology study. Environmental Health 2006;5:24.
- 19 Papadopoulou E, Caspersen IH, Kvalem HE, Knutsen HK, Duarte-Salles T, Alexander J, Meltzer HM, Kogevinas M, Brantsaeter AL, and Haugen M. Maternal dietary intake of dioxins and polychlorinated biphenyls and birth size in the Norwegian Mother and Child Cohort Study (MoBa). Environment International 2013;60:209-216.
- Miettinen HM, Huuskonen H, Partanen AM, Miettinen P, Tuomisto JT, Pohjavirta R, and Tuomisto J. Effects of epidermal growth factor receptor deficiency and 2,3,7,8-tetrachlorodibenzo-p-dioxin on fetal development in mice. Toxicology Letters 2004; **150**(3):285-291.
- Tai PT, Nishijo M, Anh NT, Maruzeni S, Nakagawa H, Van Luong H, Anh TH, Honda R, Kido T, and Nishijo H. Dioxin exposure in breast milk and infant neurodevelopment in Vietnam. Occupational and Environmental Medicine 2013;70(9):656-662.
- Yoshioka W, Peterson RE, and Tohyama C. Molecular targets that link dioxin exposure to toxicity phenotypes. The Journal of Steroid Biochemistry and Molecular Biology 2011;127(1-2):96-101.

- 23 Ten TGW, Leijs MM, de Boer LC, Legler J, Olie K, Spekreijse H, van Dijk BW, Vulsma T, Briet J, Ilsen A, and Koppe JG. Neurodevelopmental retardation, as assessed clinically and with magnetoencephalography and electroencephalography, associated with perinatal dioxin exposure. The Science of The Total Environment 2014; 1:491-492.
- Wittsiepe J, Furst P, Schrey P, Lemm F, Kraft M, Eberwein G, Winneke G, and Wilhelm M. PCDD/F and dioxin-like PCB in human blood and milk from German mothers. Chemosphere 2007;67(9):s286-294.
- Uehara R, Nakamura Y, Matsuura N, Kondo N, and Tada H. Dioxins in human milk and smoking of mothers. Chemosphere 2007; **68**(5):915-920.
- Tanabe s, and Kunisue T. Persistent organic pollutants in human breast milk from Asian countries. Environmental Pollution 2007;146(2):400-413.
- 27 Lakind JS. Recent global trends and physiologic origins of dioxins and furans in human milk. Journal of Exposure Science & Environmental Epidemiology 2007;17(6):510-524.
- 28 Hsu JF, Guo YL, Liu CH, Hu SC, Wang JN, and Liao PC. A comparison of PCDD/PCDFs exposure in infants via formula milk or breast milk feeding. Chemosphere 2007; 66(2):311-319.
- Omar TFT, Kuntom A, and Latiff AA. Dioxin/Furan level in the Malaysian Oil Palm Environment. Sains Malaysiana 2013;42(5):571-578.
- Sudaryanto A, Kunisue T, Tanabe S, Niida M, and Hashim H. Persistent organochlorine compounds in human breast milk from mothers living in Penang and Kedah, Malaysia. Archives of Environmental Contamination and Toxicology 2005;49(3):429-437.
- Tsukimori K, Uchi H, Mitoma C, Yasukawa F, Fukushima K, Todaka T, Kajiwara J, Yoshimura T, Hirata T, Wake N, and Furue M. Comparison of the concentrations of polychlorinated biphenyls and dioxins in mothers affected by the Yusho incident and their children. Chemosphere 2011;84(7):928-935.

- Rauscher GE, Mischek D, Moche W, and Prean M. Dietary intake of dioxins, furans and dioxin-like PCBs in Austria. Food Additives & Contaminants. Part A. Chemistry, analysis, control, exposure & risk assessment 2013;30(10):1770-1779.
- 33 Perello G, Gomez CJ, Castell V, Llobet JM, and Domingo JL. Assessment of the temporal trend of the dietary exposure to PCDD/Fs and PCBs in Catalonia, over Spain: health risks. Food and Chemical Toxicology 2012;50(2):399-408.
- 34 Domingo JL, Perello G, Nadal M, and Schuhmacher M. Dietary intake of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) by a population living in the vicinity of a hazardous waste incinerator: assessment of the temporal trend. Environmental International 2012;50:22-30.
- 35 Kim MJ, Marchand P, Henegar C, Antignac JP, Alili R, Poitou C, Bouillot JL, Basdevant A, Le Bizec B, Barouki R, and Clement K. Fate and complex pathogenic effects of dioxins and polychlorinated biphenols in obese subjects before and after drastic weight loss. Environmental Health Perspective 2011; 119(3):377-383.
- Caspersen IH, Knutsen HK, Brantsaeter AL, Haugen M, Alexander J, Meltzer HM, and Kvalem HE. Dietary exposure to dioxins and PCBs in a large cohort of pregnant women: Result from the Norwegian Mother and Child Cohort Study (MoBa). Environment International 2013;59:398-407.
- 37 Lignell S, Aune M, Darnerud PO, Soeria AD, Hanberg A, Larsson S, and Glynn A. Large variation in breast milk levels of organohalogenated compounds is dependent on mother's age, changes in body composition and exposures early in life. Journal of Environmental Monitoring 2011; 13(6):1607-1616.