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Objective Bouchardatine (1) is a B-indoloquinazoline alkaloid isolated from the plant
Bouchardatia neurococca, acting as a modulator of adipogenesis and lipogenesis, and as an
anticancer agent. The natural product functions as an activator of proteins adenosine
5’-monophosphate (AMP)-activated protein kinase (AMPK) and sirtuin 1 (SIRT1). We used
molecular modeling to investigate the SIRT1-binding capacity of compound 1 and various
structural analogues, such as orirenierine A (2) and orirenierine B (3) isolated from the medi-
cinal plant Oricia renieri.

Methods We investigated the binding to human SIRT1 (hSIRT1) of 25 natural products in-
cluding the f-indoloquinazoline alkaloids 1 - 3 and analogues, in comparison with the refer-
ence product sirtinol (R and S isomers). A sirtinol binding model was elaborated starting from
the closed and open state conformations of the catalytic domain of hSIRT1 (PDB structures
4KXQ and 4IG9). For each compound bound to SIRT1, the empirical energy of interaction
(AE) was calculated and compared to that of sirtinol.

Results In our model, compound 1 was found to bind modestly to the sirtinol site of SIRT1.
In contrast, the presence of a phenolic OH group at position 7 on the quinazolinone moiety
conferred a much higher binding capacity. Compound 2 provided SIRT1 protein complexes
as stable as those observed with sirtinol. The replacement of the hydroxy substituent (2) with
a methoxy group (3) reduced the SIRT1 binding capacity. Other SIRT1-binding natural
products were identified, such as the alkaloids orisuaveolines A and B. Structure-binding rela-
tionships were discussed.

Conclusion The study underlines the capacity of f-indoloquinazoline alkaloids to interact
with SIRT1. This deacetylase enzyme could represent a molecular target for the alkaloid 2.
This compound merits further attention for the design of drugs active against SIRT1-depend-
ent pathologies.

1 Introduction

neurococca (F. Muell.) Baill. (Rutaceae) collected in the
state forest of Polmaily (Queensland, Australia). It is a

The alkaloid bouchardatine (1) was isolated twenty years small rainforest tree commonly known as “union nut”

ago from the aerial parts of the plant Bouchardatia that is endemic to eastern Australia. The name
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Bouchardatia was given after the French pharmacist
Apollinaire Bouchardat (1806 — 1886). The term neuro-
cocca derives from the Greek “neuron” (nerve) and “coc-
cos” (a berry), referring to the ribbed carpels or cocci.
There is no mention of the use of this plant in traditional
medicine, unlike other related Rutaceae species. Chinese
medicinal materials originated from Rutaceae family are
frequently used to treat eczema, rheumatism, animal
bites, and other health problems [ ?. Diverse bioactive
natural products have been isolated from Bouchardatia
neurococca, including limonoids such as veprisonic and
isoveprisonic acid, and alkaloids such as bouchardatine,
dictamnine, rutaecarpine and their derivatives F!. Ses-
quiterpenes have been isolated from the plant leaf oil so
far, while the phytochemical content of this species has
been little investigated .

Bouchardatine (1) comprises a quinazolin-4-one core
linked to an indole unit equipped with a formyl group
(Figure 1). The alkaloid can be isolated from a methanol
extract of the bark of Bouchardatia neurococca after chro-
matography. Alternatively, total syntheses of the com-
pound have been described . An efficient 5-step syn-
thesis from anthranilamide afforded gram-quantities of
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compound 1 for pharmacological studies . The product
has revealed interesting properties in treating metabolic
diseases and cancer. A lipid-lowering effect was initially
described using cultured 3T3-L1 adipocytes. Compound
1 was found to reduce dose-dependently the prolifera-
tion of adipocytes and the accumulation of lipids by sup-
pressing the expression of adipogenic factors such as per-
oxisome proliferator-activated receptor y (PPARy) and
CCAAT enhancer-binding proteins (C/EBP) a/8/5. The
lipid-lowering effect of compound 1 was linked to an ac-
tivation of the adenosine 5’-monophosphate (AMP)-ac-
tivated protein kinase (AMPK) pathway .. Further stud-
ies on the effects of compound 1 on adipogenesis and
lipogenesis led to a better understanding of the mechan-
ism of action of the natural product. RAO et al. "
that compound 1 increased the activity of the protein sir-
tuin 1 (SIRT1) to facilitate activation of AMPK by the en-
zyme liver kinase Bl (LKB1). Activation of the SIRT1-
LKB1-AMPK signaling pathway by compound 1 in
adipose tissue and liver is at the origin of the anti-obesity
effect. The capacity of compound 1 to reduce obesity was
demonstrated using a specific high-fat diet model in
mice [,

found

(9}

lel CHO
.
SIRTI = )R?D

Bouchardatine

?PGC la | —>?PGC la?T PGC la

JF —

/ P(‘( la] \

%lz:z ‘ _A’_’ D Warburg effect
UCP24 glycolytic metabolism

Figure 1 Bouchardatine, plant origin, and mechanism of action

A, the aerial part of the plant Bouchardatia neurococca (F. Muell.) Baill. (https://alphitonia.com/EditSpeciesE.cshtml?id = 555).
B, structures of the alkaloids bouchardatine (1), orirenierine A (2), and orirenierine B (3). C, a schematic illustration of the mechanism
of compound 1 as an activator of the deacetylase SIRT1 to upregulate the expression of uncoupling protein 2 (UCP2) implicated in the

glycolytic metabolism of cancer cells.

The interest towards compound 1 has been under-
lined in a recent study of the anticancer activity of the
product in a murine model for rectal cancer . The
growth of a xenografted HCT-116 tumor in mice was re-
duced markedly upon daily administration of compound
1 at the dose of 50 mg/kg (i.p. injection). More import-
antly, the authors demonstrated that compound 1 activ-
ated the metabolic regulator SIRT1, leading to the sub-
sequent activation of peroxisome proliferators activated
receptor y coactivator la (PGC-1a), coupled to a down-
stream upregulation of uncoupling protein 2 (UCP2) and
an alteration of the cancer cell metabolism, as depicted in
Figure 1 ¥l UCP2 is an antioxidant mitochondrial protein
involved in the maintenance of the Warburg effect in

cancer cells. Most importantly, this study demonstrated
that activation of the SIRT1-PGCla-UCP2 axis by com-
pound 1 was at the origin of the anticancer effect. A muta-
tion (H355A) in the enzymatic site of SIRT1 abolished the
stimulation effect of compound 1, suggesting that this
protein could be a direct target for the natural product !,
Based on these considerations, we attempted to eval-
uate the capacity of compound 1 to interact with SIRT1
using molecular modeling. The protein functions as a
nicotinamide adenine dinucleotide (NAD *)-dependent
class III histone deacetylase (HDAC). The tridimensional
structure of the catalytic domain of human SIRT1 has
been solved by X-ray crystallography .. We used the
HDAC domain of human SIRT1 (hSIRT1, PDB: 4KXQ and
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4I1G9) to perform a docking study to locate the potential
binding site for compound 1, using the known hSIRT1
inhibitor sirtinol as a reference. The same model has
been used successfully by different research groups to
identify new inhibitors of hSIRT1 "', An in silico model
of the bouchardatine-hSIRT1 complex was elaborated,
and then used to compare the binding capacity of over 20
alkaloids, including orirenierine A and B (compounds 2
and 3, respectively), orisuaveoline A and B, luotonins A -
F, and other products.

2 Materials and methods
2.1 Molecular structures and software

Two tridimensional structures of hSIRT1 in a closed
(4KXQ) and an open (4IG9) state conformation were re-
trieved from the Protein Data Bank (www.rcsb.org) .
Docking experiments were performed using the GOLD
software (GOLD 5.3 release, Cambridge Crystallographic
Data Centre, UK). Before starting the docking procedure,
the structure of the ligands had been optimized using a
classical Monte Carlo (MC) conformational searching
procedure as described in the BOSS software ['2. Poten-
tial GSK-3f-binding sites for the different products were
searched using the web server Computed Atlas of Surface
Topography of proteins (CASTp) 3.0, and visualized with
the molecular modeling software Chimera 1.15 >4,

2.2 In silico molecular docking procedure

With each structure, the drug binding site and surround-
ing amino acids were defined based on shape comple-
mentarity criteria. Shape complementarity and geometry
considerations were in favor of a docking grid centered in
the volume defined by the central amino acid. Within the
binding site, side chains of specific amino acids were
considered fully flexible. For structure 4KXQ, the flexible
amino acids were Phe273, Phe297, 1le316, Tyr317, lle347,
His363, Ser365, Phe366, Val412, and Phe413. The ligand
was always defined as flexible during the docking proced-
ure. Up to 100 poses that were energetically reasonable
were kept while searching for the correct binding mode of
the ligand. The decision to keep a trial pose was based on
ranked poses, using the Picewise Liner Potential (PLP) fit-
ness scoring function (which is the default in GOLD ver-
sion 5.3 used here) *. The same procedure was used to
establish molecular models for the various natural pro-
ducts (Table 1) and the reference compounds. The em-
pirical potential energy of interaction (AE) for the ranked
complexes was evaluated using the simple expression
AE (interaction) = E (complex) - [E (protein) + E (ligand)].
For that purpose, the Spectroscopic Empirical Potential
Energy function Spectroscopic Potential Algorithm for
SImulating Biomolecular conformational Adaptability
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(SPASIBA) and the corresponding parameters were used.
Free energies of hydration (AG) were estimated using the
Molecular Mechanics/Generalized Born Surface Area
(MM/GBSA) model in MC simulations within the BOSS
software ['l. The stability of the receptor-ligand complex
was evaluated based on the empirical potential energy of
interaction ['" '*l. The MM/GBSA procedure was used to
evaluate free energies of hydration (within the BOSS pro-
gram) [ in relation to aqueous solubility. Molecular
graphics were created and analyzed using Discovery Stu-
dio Visualizer, Biovia 2020 (Dassault Systeémes BIOVIA
Discovery Studio Visualizer 2020, San Diego, Dassault
Systemes, 2020).

Table 1 Calculated potential energy of interaction (AE,
kcal/mol) and free energy of hydration (AGy,yq, kcal/mol)
for the interaction of indoloquinazolinone alkaloids (and
selected natural products) with SIRT1 (PDB: 4KXQ)

Compound CID?* AE AGpyq
(R)-Sirtinol 1376646 -75.70 -32.60
(8)-Sirtinol 1376645 —74.50 -29.60
Bouchardatine 135800540 —49.50 -21.70
Orirenierine A - -71.40 -23.70
Orirenierine B - —-56.90 —-25.40
Orisuaveoline A 135953334 -65.40 -18.70
Orisuaveoline B 25157868 -64.40 -26.15
Ketoyobirine 275187 -62.90 -20.70
Hortiacine 378227 —-54.00 -18.70
Evodiamine 442088 -52.30 -17.30
Hydroxyevodiamine 56967381 -63.90 -18.80
Angustine 441983 -58.40 -1.40
Angustoline 3084765 —-48.00 -3.40
Naucletine 5320037 —-49.40 -21.90
Rhetsinine 99652 —-54.20 -17.30
Tephcalostan 11013898 -59.10 -25.90
Tephcalostan B 25243039 -56.65 -22.15
Tephcalostan C - -58.80 -27.80
Tephcalostan D 102283894 -63.10 -21.80
Luotonin A 10334120 —-48.95 -18.50
Luotonin B 10017730 —42.55 -12.60
Luotonin C 102369825 —-44.80 -19.10
Luotonin D 102369826  —55.30 -17.00
Luotonin E 11483874 —45.95 -23.20
Luotonin F 13545779  —53.55 -13.10

“Compound IDentity number, as defined in PubChem (https://

“ n

pubchem.ncbi.nlm.nih.gov). represents that these

compounds are not listed in the PubChem databank.

2.3 MC simulations

The two most widely used methods to investigate pro-
tein-ligand stability and affinity are Molecular Dynamics
(MD) and MC simulations. MD simulation of proteins is a
challenge that requires careful consideration of the 1st
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law of thermodynamics '”. Both methods employ an
empirical force field to control the total energy (MC, en-
ergy minimization) and forces (MD, Newton equations of
motion). To use MD simulations confidently, a force field
parameterized for dynamical properties is required. The
development of a reliable and accurate force field for
conformational analysis remains a concern. It requires
accuracy of the force field over the whole potential sur-
face, rather than in the region of the global minimum .
The most used academic force fields, such as Chemistry
at HARvard Macromolecular Mechanics (CHARMM), As-
sisted Model Building with Energy Refinement (AMBER),
and GROningen MOlecular Simulation (GROMOS), do
not exhibit the required vibrational spectroscopic quality.
Minimization of a protein structure with normal modes
can result in the calculation of imaginary wavenumbers
corresponding to maxima in the potential energy (trans-
ition states, mainly due to inadequate barriers to internal
rotation). The spectroscopic SPASIBA force field has been
specifically developed to provide refined empirical mo-
lecular mechanics force field parameters, as described in
other studies [ ?!l, For this reason, we adopted MC simu-
lations rather than MD, which requires a substantial in-
crease in computing time to achieve the same level of
convergence 2,

3 Results
3.1 Construction of the sirtinol-SIRT1 binding model

We started our analysis with two structural models of
SIRT1. The PDB structures 4KXQ and 4IG9 refer to a
closed and an open state conformation of the catalytic
domain of hSIRTI, respectively . The two structures
were very similar, as shown from the superimposed mod-
el in Figure 2A. The position of the adenosine 5’-diphos-
phoribose (ADP-ribose) ligand was identical for the two
structures; the secondary structure of the binding site was
preserved. The only significant difference was around the
loop Phe273-11e279, which seemed to act as a gate, clos-
ing or opening the site, as represented in Figure 2B,
though this gate did not affect sirtinol binding around site
I347. To locate the drug binding site, we used the web
server CASTp 3.0, which was specifically designed for the
analysis of protein topography. This tool is mostly used in
identifying drug binding sites and quantifying the volume
of the binding pocket ¥, A view of the drug-binding
pocket defined with CASTp using the open state con-
formation (41J9) is shown in Figure 2B. Two potential
binding sites were identified for the reference inhibitor
sirtinol. The best site was located near residue Ile347
(AE = - 71.30 kcal/mol and AG = - 30.40 kcal/mol) and a
secondary site near residue Ile316 (AE = - 55.40 kcal/mol
and AG = -20.00 kcal/mol). The main sirtinol binding
site Ile347 was juxtaposed to the ADP-ribose binding site
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(Figure 2C). This site Ile347 was defined as the potential
binding site for the other ligands tested in our docking
analysis, and was juxtaposed to the C-pocket, where the
nicotinamide moiety of NAD*binds and the hydrolysis
takes place. Drug binding to this site is known to block
the transformation of NAD*to productive conformation
and to inhibit the deacetylase activity ** >!. The second-
ary weak site (Ile316) has never been mentioned in other
studies; it is considered too weak and irrelevant. Our ana-
lysis was thus focused on the primary site.

D

Sirtinol

Sirtinol

)

+— ADP-ribose

Figure 2 Molecular model of sirtinol bound to SIRT1

A, superimposition of the open state (41J9, magenta) and closed
state (4KXQ, yellow) conformations of SIRT1. A closed view of
the ADP-ribose binding zone is shown (inset) to underline the
different positions of the F273-1279 flexible loop, closed or
opened. B, a view of the sirtinol binding zone (as defined by
CASTp 3.0) delimited by the hydrophilic (blue) and hydro-
phobic (red) areas. C, global view of the catalytic domain of
hSIRT1 with the ADP-ribose (violet) and sirtinol (green) bind-
ing regions highlighted. The structure of sirtinol is shown (with
the asymmetry center *).

We defined the pocket around residue Ile347 as the
sirtinol binding site and compared the two isomers (R)-
sirtinol and (S)-sirtinol, but no significant difference was
found between the two products: both produced stable
complexes with SIRT1 as indicated from the AE values
collated in Table 1. As expected, there is no enantioselect-
ive inhibitory effect toward SIRT1. It has been shown that
(R)- and (S)-sirtinol have similar inhibitory effects on the
yeast and human SIRT1 enzymes .. Altogether, our
sirtinol-SIRT1 model falls in good agreement with mod-
els previously published. We kept the model (4KXQ) for
the subsequent docking analysis.

3.2 Interaction of bouchardatine with SIRT1

A docking model of compound 1 bound to SIRT1 was
elaborated, as shown in Figure 3, where compound 1 sits
in the small cavity close to the ADP-ribose binding site.
Several interactions stabilized the drug-protein complex,
including a 7-stacking interaction with Phe273 and an H-
bond between NH-indole and Ile347. Additional van der
Waals contacts contributed to maintaining the
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drug-protein interaction but overall, the SIRT1-1 com-
plex was not as stable as the one formed between SIRT1
and sirtinol. The calculated AE and AG were weaker with
compound 1 versussirtinol (Table 1). The AE valuereached
- 75.70 kcal/mol with (R)-sirtinol compared to only
- 49.50 kcal/mol with compound 1, a loss of 34% in bind-
ing energy. Under these conditions, the alkaloid can be
considered as a potential weak binder.

A
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Figure 3 Molecular model of bouchardatine (1) bound
to SIRT1 (PDB: 4KXQ)

A, SIRT1-1 complex in the presence of ADP-ribose, with the cor-
responding H-bond donor/acceptor elements. The protein is
shown with the a-helices (red) and f-sheets (cyan). B, binding
map contacts for 1 bound to SIRT1 (color codes indicated).

3.3 Interaction of orirenierines A and B with SIRT1

Next, we investigated the binding of bouchardatine deriv-
atives with the protein. The closest naturally-occurring
analogues known are the alkaloids orirenierine A (2) and
orirenierine B (3), which have been isolated from the
Cameroonian medicinal plant Oricia renieri (Rutaceae) %,
They only differ from compound 1 by the presence of a
hydroxy (2) or methoxy (3) substituent at position 7 on
the quinazolinone heterocycle (Figure 1). The plant
Oricia renieri is used in traditional medicine to treat in-
flammatory conditions, such as mastitis *”. Compound 2
was found to display a higher anti-inflammatory poten-
tial compared to compounds 3 and 1 in a blood-based
test of zymosan-induced neutrophil activation, showing
half maximal inhibitory concentration (IC5,) values of 2.7,
3.8, and 4.9 pmol, respectively !,

The SIRT1 docking analysis performed with com-
pounds 1 — 3 yielded useful information. The alkaloid 2
equipped with a 7-hydroxyl group can form very stable
complexes with SIRT1, as judged from the calculated AE
values (Table 1). In this case, the AE value reached
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- 71.40 kcal/mol, a value close to that calculated with the
reference product sirtinol. This product displays anti-in-
flammatory and anticancer effects ***!. A model of the
SIRT1-2 complex is presented in Figure 4. The n-stacking
interaction between the quinazolinone and Phe273 was
preserved, but in addition, there were two potential H-
bonds implicating the hydroxyl group on the drug: one
with Tyr280 and one directly with the ADP-ribose ligand
(Figure 4A). The hydroxyl group pointed toward the ADP-
ribose site in a solvent-accessible area (Figure 4B). The
capping of this OH group with methyl reduced the
binding interaction. The methoxy analogue 3 was much
less prone to binding to SIRT1 than compound 2 (AE =
-56.90 and - 71.40 kcal/mol, respectively). Compound 2
bound to the same site as sirtinol but the orientation of
the compound within the site was significantly different
(Figure 5A). The 7-OH group of compound 2 anchored

e (R
273 1:602
N e
g PHE Ley
[ Van der Waals €D a297  A283
[ H-Bond e
[ n-Stacking
[ n-Alkyl

Figure 4 Molecular model of orirenierine A bound to
SIRT1

A, 1-SIRT1 binding complex. The close-up view shows the two
bifurcated H-bonds between the phenolic OH of the drug and
residue Tyrosine 280 (Y280) of SIRT1 and the terminal ribose
unit of ADP-ribose. B, a detailed view of the drug-binding site
with the solvent accessible surface (SAS) colored. C, binding
map contacts orirenierine A bound to SIRT1 (color codes indic-
ated).
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the molecule to ADP-ribose whereas the 7-OCHj, group of
compound 3 pulled apart the molecule from the ADP-
ribose (Figure 5B).

Figure 5 Compounds orientation in the binding site

A, detailed view of the drug-binding pocket of SIRT1 showing
the distinct orientation of orirenierine A (Ori-A) and sirtinol.
The two compounds are facing the ADP-ribose ligand. B, super-
imposed view of orirenierine A (Ori-A) and orirenierine B (Ori-
B) bound to SIRT1. Note the distinct orientations of the 7-hy-
droxy (Ori-A) and 7-methoxy group (Ori-B) (arrows).

3.4 Other alkaloids

The identification of orirenierine A (2) as a potential
SIRT1 binder prompted us to look for other indolo-
quinazolinone alkaloids susceptible to forming stable
complexes with the protein. We identified a dozen natur-
al products bearing an indoloquinazolinone unit and ex-
tended the search to 20 compounds, including quinazo-
linocarboline alkaloids like evodiamine, coumestan deri-
vatives like tephcalostans, and pyrroloquinolinequino-
line alkaloids like luotonin A and its derivatives (Figure 6).
However, in most cases these compounds were con-
tained in an extended pentacyclic core system, quite dis-
tinct from the bi-unit system of compounds 1 - 3. For
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example, the two alkaloids orisuaveolines A and B isol-
ated from the plant Oricia suaveolens ® bore the same j-
indoloquinazoline core as compounds 1 — 3 but the quina-
zoline and indole unit were fused to form a penta (orisua-
veoline A) or hexa (orisuaveoline B) cyclic rigid system.
SIRT1 docking analysis was performed with all com-
pounds (Table 1). We did not identify a natural product
superior to orirenierine A for binding to SIRT1. However,
useful information was obtained.

Orisuaveolines A and B bore the same -OH or -OCHj,
as orirenierine A (2) and orirenierine B (3), respectively.
These two compounds were superior to compound 1,
thus providing another piece of evidence for the key role
of the phenolic OH group in protein binding. However,
the rigid polyaromatic system was apparently less favor-
able than the bis-unit of compounds 1 - 3. The AE value
calculated with orisuaveoline A was only 10% higher than
that of orirenierine A. The anti-inflammatory action of
this compound would be worth investigating, which has
not been studied thus far.

The quinolone alkaloid evodiamine (isolated from the
fruit of Evodia rutaecarpa and other plants) displayed a
large range of biological activities, including antitumor,
anti-inflammation, and antimicrobial effects ® %, It rep-
resented a lead structure for the design of anticancer
compounds ¥, with its anticancer activity being con-
sidered as SIRT1-mediated **. SIRT1 was likely to play a
significant role in the capacity of evodiamine to inhibit
the migration and invasion of cancer cells °*), but our cal-
culations suggest that SIRT1 is not a direct binding target
for evodiamine. At least, we can underline that the com-
pound cannot form highly stable complexes upon bind-
ing to the sirtinol site of the protein. However, it is
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Figure 6 Structure of the other natural products evaluated as potential SIRT1 binders (as indicated in Table 1)
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interesting to note that 10-hydroxyevodiamine demon-
strated a better SIRT1 binding capacity than that of evo-
diamine (Table 1). The OH-group significantly reinforced
the stability of the alkaloid-protein complex, with a gain of
AE value of about 15% (AE= - 52.30 and - 63.90 kcal/mol
for evodiamine and hydroxyevodiamine, respectively).
This is interesting as 10-hydroxyevodiamine has been
used to design fluorescent probes and tumor-active wa-
ter-soluble derivatives >, The 10-OH group can be ex-
ploited to reinforce evodiamine binding to SIRT1, where-
as the N-methyl group is apparently unessential. The
little-known alkaloid ketoyobirine, which is rarely invest-
igated ¥, is as efficient as evodiamine in binding to
SIRT1. In short, several compounds could be tested but
only one stands out as a promising SIRT1 binder: oriren-
ierine A.

4 Discussion

More than 150 naturally occurring quinazolinone alkal-
oids have been identified by now > *l. Some of them
have been thoroughly investigated, such as the luoton-
ins "1, while others have received little attention, such as
the quinazolinocarboline alkaloid hortiacine "%, This is
also the case for the alkaloids orirenierines A and B, and
orisuaveolines A and B isolated from Oricia renieri and
Oricia suaveolens, respectively, by the same research
group !, These alkaloids have been described but their
mechanisms of action remain unknown. In contrast, the
quinazolinone alkaloid bouchardatine (1) has received
attention owing to its potential in the treatment of
obesity-related metabolic disorders and cancers. The sig-
naling pathways modulated by this natural product have
been characterized, notably the SIRT1-PGCla-UCP2 axis,
and a recent study suggested that SIRT1 could be a direct
target for the natural product *. Based on this study, and
considering the structural analogy between compound 1
and orirenierines A and B (2 and 3), we established a
docking study to investigate this topic.

The analysis indicated the superior capacity of the re-
lated alkaloid compound 2 compared to compound 1 to
bind to hSIRT1. This alkaloid 2, which is structurally close
to compound 1 (Figure 1), showed better adaptability to
form stable complexes with hSIRT1 than compound 3
and all the other polycyclic indoloquinazolinone alkal-
oids tested. The observation is of great importance from a
medicinal point of view because compound 2 derives
from the Cameroonian plant Oricia renieri (Rutaceae)
and is used locally to treat different types of infections
and cancers . Qur analysis suggests that SIRT1 may
effectively represent a protein target for these alkaloids.
They have the capacity to bind to the sirtinol-binding site,
in the pocket facing the ADP-ribose ligand. Compound 1
emerged as a relatively weak SIRT1 binder compared to
the reference sirtinol, whereas compound 2 is

Gérard Vergoten, et al. / Digital Chinese Medicine 5 (2022) 276-285

quasi-equipotent to sirtinol, at least in terms of binding
energy (AE). The phenolic OH which distinguishes com-
pound 1 from 2 is a prime element for protein binding,
and the capping of this group in the form of a methoxy
(compound 3) reduces the binding interaction. This OH
group is undoubtedly a key protein binding element. It is
noteworthy that the potency of the three compounds in
terms of SIRT1 binding is comparable to their potency as
cytotoxic agents against cancer cells. Compound 2 was
found to be more cytotoxic toward PC3 prostate cancer
cells compared with compounds 3 and 1, with ICg, val-
ues of 23.2, 36.5, and 39.4 pmol, respectively . In other
words, the higher capacity of 2 to interact with SIRT1 cor-
relates with its higher cytotoxic potential. This com-
pound merits further attention. It is an important com-
ponent of extracts of Oricia renieri ), and for the first
time, a molecular target for it is proposed.

SIRT1 binders were actively searched because these
compounds showed potential in the treatment of cancer
and other human diseases, including autoimmune dis-
eases [l It is therefore interesting to propose a new
scaffold g-indoloquinazoline for the design of SIRT1-in-
teracting drugs. This scaffold has been little investigated
thus far. However, there are two noticeable exceptions.
Recently, the drug 1QZ23 has been proposed as a candid-
ate for the treatment of obesity and obesity-related meta-
bolic disorders. This f-indoloquinazoline derivative was
found to activate the AMPK pathway but its molecular
target is not precisely known ", The preclinical develop-
ment of IQZ23 has been initiated ", It would be interest-
ing to determine its capacity to modulate the activity of
SIRT1. Similarly, compounds 1 — 3 present a structural
analogy with the anticancer dihydroquinazolinone deriv-
ative MHY2245 recently identified as a potent sirtuin in-
hibitor “* *l, This reinforces the idea that orirenierines
can be used as templates to design SIRT1 modulators.

The present work can also guide the future design of
bouchardatine analogues. Various synthetic analogues of
compound 1 have been designed as inhibitors of adipo-
genesis/lipogenesis .. For example, the lipid-lowering
activity of compound 1 can be considerably enhanced by
replacing the quinazolin-4-one with a quinazolin-4-
amine group. Potent activators of AMPK have been ob-
tained, with compounds active in vivo, of interest in the
treatment of metabolic diseases and non-alcoholic fatty
liver disease (NAFLD) %%, Based on our observations,
new compounds bearing the key 7-OH group of com-
pound 2 could be now envisioned to reinforce SIRT1
binding and potentially their activity against different
metabolic diseases.

As an important protein target, SIRT1 is associated
with the activity of different Chinese medicine prescrip-
tions, such as Taohuajing (Bt 7£.4%) treating diabetic car-
diomyopathy %, Yunpi Heluo Decoction (i&A%F=% 77)
treating type 2 diabetes """, Zhibai Dihuang Decoction (%=
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H## %) treating oral ulcers . The identification of
novel SIRT1 binders may help further to better under-
stand the molecular basis of the bioactivity of different
Chinese medicine products.

This computational study is useful to select and prior-
itize compounds for further laboratory experiments.
Docking analysis such as those reported here have lim-
ited predictability, due to the complexity of the protein
folding process and its dynamic ®. Molecular docking
represents a useful aid in the process of drug discovery
and development °”**), but its predictive value is limited.
We do not underestimate the necessity to carry out wet-
lab validations for the predicted SIRT1-binding candid-
ates identified here.

5 Conclusion

In summary, SIRT1 is an NAD *-dependent deacetylase
implicated in various human pathologies. Small mo-
lecule modulators of SIRT1 were searched, including
SIRT1 inhibitors and activators. Here we found that alkal-
oids bearing an unfused f-indoloquinazoline ring system
can provide potential SIRT1 binders. We characterized
the interaction of the alkaloid orirenierine A (2) with hu-
man SIRT1 at the sirtinol-binding site. The specific con-
tribution of the phenolic OH group of compound 2 was
underlined. The use of various structural analogues en-
ables the definition of structure-binding relationships.

6 Highlights

(i) The plant alkaloid bouchardatine (1) has been found
to activate the enzyme SIRT1.

(ii) Molecular docking indicates that analogue orirenier-
ine A (2) presents a high capacity to bind to the sirtinol
site of SIRT1.

(iii) A few other indoloquinazoline alkaloids interacting
at the sirtinol site of SIRT1 have been identified.

(iv) Structure-binding elements have been defined in the
chemical series.

(v) The g-indoloquinazoline unit can be exploited to
design SIRT1-binding drugs active against cancers.
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