# **ORIGINAL ARTICLE**

# HIGH-POWERED POLICE MOTORCYCLE: MUSCLE DISCOMFORT AMONG MALAYSIAN TRAFFIC POLICE RIDERS

Nur Athirah D, Karmegam K, Irniza R, Shamsul Bahri MT, Vivien H, Putri Anis S, Kulanthayan K. C. Mani, Sivasankar S and Mohd Hafzi MI

<sup>1</sup>Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia

<sup>2</sup>Department of Community Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia

<sup>3</sup>Vehicle Safety & Biomechanics Research Centre, Malaysian Institute of Road Safety Research, 125-135, Jalan TKS 1, Taman Kajang Sentral, 43000 Kajang, Selangor, Malaysia.

\* Corresponding author: Karmegam Karuppiah

Email address: megam@upm.edu.my

#### **ABSTRACT**

Discomfort due to riding a motorcycle is an issue that need to be addressed as it has long-term effects of musculoskeletal disorders on motorcyclists especially among occupational motorcyclist. Thus, this study was conducted to analyse the rating of muscle discomfort and correlation with the risk factors among traffic police riders. A crosssectional study was carried out among 137 male traffic police riders (high-powered motorcycle) with the age between 20 to 39 years old. The 100-mm visual analogue scale questionnaire included ratings of perceived discomfort scales for 20 specific body regions was used in the study. The results indicate that the lower back (left and right) were the highest mean of discomfort which were 56.6 mm and 55.9 mm respectively. This followed with right (48.5±36.2 mm) and left (48.4±30.3 mm) upper back, and right hand (47.0±33.0 mm). The mean of overall discomfort ratings for all regions were more than 20 mm. Besides, there is a strong positive significant correlation between duration of ridings (hours) and overall discomfort ratings (p<0.01, r=0.785) and moderate positive correlation between year of traffic police motorcycle riding experience and overall discomfort ratings (p<0.01, r=0.410). As a conclusion, cumulative riding hours, riding experience and no support of the back area of the body in motorcycle seat, are the most concern in this study as this are the contributing factors to the muscle discomfort among traffic police riders while riding highpowered motorcycle. Thus, this study suggested an additional feature is needed in current motorcycle design in order to enhance comforts of traffic police riders. Also, it will improve the condition of traffic police riders' discomfort and indirectly also improve their work and health performance as well as productivity.

**Keywords**: Body region; musculoskeletal disorders; riding; posture; Visual Analogue Scale

# INTRODUCTION

Discomfort is associated with tiredness, numbness and pain feelings<sup>1</sup>. Meanwhile, according to Bernard et al. (1997), body discomfort is the first indicator for many types of musculoskeletal disorders (MSD)<sup>2</sup>. Discomfort and comfort level are commonly measured by using subjective rating scales. The respondents will be asked to evaluate their pain intensity and discomfort by using body map <sup>3</sup>.

Motorcycle riding provides unnatural workstation as there are lacks of adjustment to fulfil the riders need<sup>3</sup>. According to Porter and Gyi (2002), regularity of exposure to driving which leads to the development of musculoskeletal symptoms among the drivers and the study also found that the discomfort frequency also increased along with the total distance of driving <sup>4</sup>. It shows that the frequency and duration of driving influenced the level of discomfort. Besides, a study by Balasubramanian and Jaannath (2014) concluded that the longer duration of riding causes more fatigue among motorcycle riders<sup>5</sup>. An erector spinae and latissimus dorsi medial are among

posture muscles that show fatigue development due to motorcycling activity.

Biomechanical factors also linked with the development of bodily discomfort. For examples, muscular contractions, postures, joint angles, stresses and distribution of pressure while sitting <sup>6</sup>. Riding activity for a prolonged time can lead to musculoskeletal disorders problem. A previous study by Ramasamy et al. (2017) showed that shoulder and back parts have high number of incidences for driving related musculoskeletal disorders <sup>7</sup>. Static position of sitting also influence the level of discomfort during riding. The action of sitting for an extended time with the same position and limited space lead to discomfort and fatigue.

In addition, prevalence of low back pain and discomfort was more significant among occupational motorcyclist compared to non-occupational motorcyclist <sup>8</sup>. In Malaysia, traffic police are responsible for controlling traffic congestion, escorting VIP, and coordinating traffic. Traffic police use various types of vehicles including motorcycles for carrying out their daily duties. They may ride for many hours while on

duty which can lead to muscle discomfort, a decrease in their productivity and work performance, and even health risk. Thus, this study was conducted to analyse the rating of muscle discomfort and correlation with the risk factors among traffic police riders.

#### **METHODS**

A cross-sectional study was carried out among one-hundred-and-thirty-seven male police riders who are riding a high-powered motorcycle (Honda CBX 750) were recruited volunteers for this experiment. The respondents were selected based on criteria of males, aged between 20 to 39 years old with experienced at least more than one-year ride, Honda CBX 750 motorcycle. None subjects had a previous history of MSD before qualifying as police riders. The mean age of the respondents was 31.8 years old. The mean year of traffic police motorcycle riding experience was 5.5 years. The mean duration of daily riding among the respondents was 5.64 hours.

#### Questionnaire

The questionnaire included ratings of perceived discomfort scales for 20 specific body regions to obtain information on the body regions that most experienced discomfort during riding high-powered motorcycle. The 100-mm (millimetre) visual analogue scale (VAS) was used in this questionnaire, with 0 mm representing no discomfort and 100 mm representing extreme discomfort. This questionnaire was adapted from Donnelly et al. (2009) and Mergl et al. (2005) 9,10.

This questionnaire was distributed to the respondents during their break in a meeting room, Police Station. Each of the respondents were explained briefly about the questionnaire and written consent form was obtained from respondent to participate in this study. The questionnaire session lasted approximately 10 minutes.

# Statistical Analysis

All the data gathered from questionnaire and measurement will be analysed by using IBM SPSS (Statistical Package for the Social Science) version 22. The data collected was analysed by using univariate and bivariate analysis. This study was conducted using 95% confident level, 80% of power and the results of p $\leq$ 0.05 was considered significant.

#### **RESULTS**

The mean rating of body parts discomfort symptoms rating experienced by the traffic police riders are shown in Fig.1. A rating of perceived discomfort level from 5 mm to 44 mm was considered mild, 45-74 mm was moderate and 75-100 mm was considered extremely discomfort <sup>11</sup>. The lower back (left and right) were the highest mean of discomfort which were 56.6 mm and 55.9 mm respectively. This followed with right (48.5±36.2 mm) and left (48.4±30.3 mm) upper back, and right hand (47.0±33.0 mm). The mean of overall discomfort ratings for all regions were more than 20 mm.

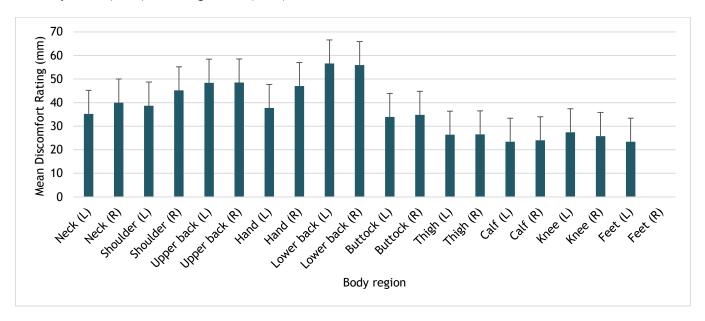



Figure 1. Mean (SD) discomfort ratings of 20 specific body regions (n=137).

The results of the correlation between overall discomfort ratings with age, duration of ridings, and year of traffic police motorcycle riding experience was shown in Table 1. There is a strong positive significant correlation between duration

of ridings (hours) and overall discomfort ratings (p<0.01, r=0.785) and moderate positive correlation between year of traffic police motorcycle riding experience and overall discomfort ratings (p<0.01, r=0.410). However, in

this study we found that there is no significant correlation between age and overall discomfort ratings.

Table 1. Correlation between overall discomfort ratings with age, duration of ridings, and year of traffic police motorcycle riding experience (n=137).

|                            | Duration of riding (hours) | Riding experience (year) | Age    | Overall discomfort ratings (cm) |
|----------------------------|----------------------------|--------------------------|--------|---------------------------------|
| Duration of riding         |                            | 0.373*                   | 0.164  | 0.785*                          |
| Riding experience          | 0.373*                     |                          | 0.464* | 0.410*                          |
| Age                        | 0.164                      | 0.464*                   |        | 0.053                           |
| Overall discomfort ratings | 0.785*                     | 0.410*                   | 0.053  |                                 |

<sup>\*</sup> p-value is significant at p<0.01

#### **DISCUSSION**

The discomfort ratings result in this study was supported by previous studies that traffic police officers were exposed to prolonged riding routinely which cause high tendency in developing muscle discomfort and MSD compared to workers not exposed to this condition <sup>12,13</sup>. This study discovered that several body parts of the traffic police riders experienced discomfort symptoms due to riding. This study is in agreement with the previous study on seating comfort among police officers found that lower back experienced greater discomfort compared to other body parts <sup>9</sup>.

There are several factors that may promote the development of body parts discomfort. First of all, the duration of riding. This study revealed that police riders spent more than 5 hours daily on riding. Therefore, this prolonged duration of riding may have contributed to body parts discomfort among the riders. The results of this study are also similar to the previous study that showed police officer experienced low back discomfort after exposure to prolonged driving experience <sup>9,14</sup>.

Besides, the motorcycle itself also considered as unergonomic for the police riders' usage. The rider has to maintain the static posture for a long period during riding in order to ride safely. Larsen et. al (2018) explained that prolonged static posture can cause rider fatigue and seat discomfort <sup>15</sup>. This is because static posture by the rider may cause interruption of muscular blood supply due to high intramuscular pressure. Lack of oxygen to muscles will lead to discomfort and fatigue to the rider. Divana et. al (2019) also demonstrated that vibration exposure, prolonged static sitting during riding contributed to MSD especially in neck, shoulder and lower back <sup>13</sup>. The motorcycle also only provides limited space for adjustment which may be different among the riders need <sup>3</sup>. Moreover, carriage of police appointment including a firearm, handcuff and walkie-talkie also may lead to discomfort in the lower part of the body as this equipment are attached to the police's belt <sup>15</sup>. They also revealed that carriage of appointments with normal belt resulted in greater overall discomfort among police officers compared to load-bearing vest/belt combination.

The hand and shoulder were also among the highest discomfort ratings in this study with 47.0±33.0 mm and 45.2±27.9 mm. Interestingly, both of them were from the right side of the body. This finding was parallel with several studies where hand and shoulder were the most common body discomfort reported among motorcycle riders <sup>16,17,18</sup>. Local vibration from the handlebars and static position of the hand-arm during riding motorcycle may contribute to the cause of this discomfort <sup>12, 19</sup>. Based on Roseiro et al. (2016), the most affected body part among motorcyclist were forearm, arm, and shoulder due to high level of hand-arm vibration from the handlebars <sup>12</sup>.

The present study found there was strong significant correlation between overall discomfort and duration of riding motorcycle (hours). The results of this study were supported by Jagannath and Balasubramaniam (2014) where they found that at the end of 60 minutes riding, the riders reported physically discomfort in back, shoulder and buttock muscle <sup>5</sup>. Karmegam et al. (2011) also found that there is a significant correlation between riding duration and buttock and upper body part discomfort among male riders with average 11 hours riding duration in a week 21. Riding for an hour while yields dominant pressure distribution with peak pressure at the ischium These observed uneven pressure region. distribution over motorcycle seat have substantial contribution to cause rider discomfort 22. Prolonged and monotonous riding position and activity have been found induce the muscle discomfort and fatigue. The retention of the rider's posture and exposure to whole body vibration along riding duration causes low level muscle contraction that muscle produce discomfort <sup>13</sup>.

Riding experience was also found had a significant relationship with overall muscle discomfort ratings. This result agreed with Karmegam et al.

(2011) where they found that riding experience had positive correlation with upper back, lower back, hand and buttock <sup>21</sup>. In this present study, this trend may cause by body posture adapted while riding motorcycle. Since, CBX 750 motorcycle applied standard posture while riding motorcycle, the awkward posture can lead to muscle injuries and discomfort issues. Besides, the present study found that muscle discomfort was also likely caused by lifting the heavy motorcycle repeatedly during the duration of work to on and off the motorcycle stand for parking.

# **CONCLUSION**

In a conclusion, lower and upper back area are the most affected body part with discomfort among traffic police riders is not surprising giving the constrained work space (motorcycle). However, it is still a cause of concern for the high level of discomfort which can lead to MSD in future. Cumulative riding hours, riding experience and no support of the back area of the body in motorcycle seat with the many equipment attached to the police's belt that must be worn along the work shift, are the most concern in this study. Thus, this study suggested the development of an ergonomic motorcycle seat design and fits with traffic police rider's needs. It will improve the condition of traffic police riders' discomfort and indirectly also improve their work and health performance as well as productivity.

# **ABBREVIATIONS**

MSD-Musculoskeletal disorders, VAS-Visual Analogue Scale.

# **ACKNOWLEDGEMENTS**

The authors would like to show gratitude to all officers who willingly participated in this study and give cooperation throughout the data collection process. This study is supported and granted by the Ministry of Education Malaysia (MOE) Fundamental Research Grant Scheme (FRGS), Vote No: 5524770, IPS Putra Grant, 9616000 and Graduate Research Fellowship (GRF) from Universiti Putra Malaysia. No funding bodies had any role in decision to publish or preparation of the manuscript.

# **COMPETING INTERESTS**

There is no conflict of interest.

#### **REFERENCES**

1. Zhang L, Helander MG, Drury CG. Identifying factors of comfort and discomfort in sitting. Human factors. 1996 Sep;38(3):377-89.

- Bernard BP, Putz-Anderson V. Musculoskeletal disorders and workplace factors; a critical review of epidemiologic evidence for work-related musculoskeletal disorders of the neck, upper extremity, and low back. 1997.
- 3. Karmegam K, Ismail MY, Sapuan SM, Ismail N, Shamsul BM, Shuib S, Seetha P. A study on motorcyclist's riding discomfort in Malaysia. Engineering e-Transaction. 2009;4(1):39-46.
- 4. Porter JM, Gyi DE. The prevalence of musculoskeletal troubles among car drivers. Occupational medicine. 2002 Feb 1;52(1):4-12.
- Balasubramanian V, Jagannath M. Detecting motorcycle rider local physical fatigue and discomfort using surface electromyography and seat interface pressure. Transportation research part F: traffic psychology and behaviour. 2014 Jan 1;22:150-8.
- Ospina-Mateus H, Jiménez LA. Understanding the impact of physical fatigue and postural comfort experienced during motorcycling: a systematic review. Journal of Transport & Health. 2019 Mar 1;12:290-318.
- 7. Patel TN. Evaluation of driving-related musculoskeletal disorders in motorbike riders using Quick Exposure Check (QEC). Biomedical Research (0970-938X). 2017 Sep 1;28(5).
- 8. Hafzi MM, Rohayu S, Faradila PN, Wong SV. Prevalence and risk factors of musculoskeletal disorders of motorcyclists. Prevalence. 2011 Dec;1.
- Donnelly CJ, Callaghan JP, Durkin JL. The effect of an active lumbar system on the seating comfort of officers in police fleet vehicles. International journal of occupational safety and ergonomics. 2009 Jan 1;15(3):295-307.
- 10. Mergl C, Klendauer M, Mangen C, Bubb H. Predicting Long Term Riding Comfort in Cars by Contact Forces Between Human and Seat: SAE Technical Paper 2005-01-2690. InProceedings of the SAE Conference on Digital Human Modeling for Design and Engineering Symposium 2005.
- 11. Hawker GA, Mian S, Kendzerska T, French M. Measures of adult pain: Visual analog scale for pain (vas pain), numeric rating scale for pain (nrs pain), mcgill pain questionnaire (mpq), short-form mcgill

- pain questionnaire (sf-mpq), chronic pain grade scale (cpgs), short form-36 bodily pain scale (sf-36 bps), and measure of intermittent and constant osteoarthritis pain (icoap). Arthritis care & research. 2011 Nov;63(S11):S240-52.
- 12. Mirbod SM, Yoshida H, Jamali M, Masamura K, Inaba R, Iwata H. Assessment of hand-arm vibration exposure among traffic police motorcyclists. International Archives of occupational and Environmental health. 1997 Nov 1;70(1):22-8.
- Diyana MA, Karmegam K, Shamsul BM, Irniza R, Vivien H, Sivasankar S, Syahira MP, Kulanthayan KC. Risk factors analysis: Work-related musculoskeletal disorders among male traffic policemen using highpowered motorcycles. International Journal of Industrial Ergonomics. 2019 Nov 1;74:102863.
- 14. Porter JM, Gyi DE. Exploring the optimum posture for driver comfort. International Journal of Vehicle Design. 1998 Jan 1;19(3):255-66.
- 15. Larsen LB, Andersson EE, Tranberg R, Ramstrand N. Multi-site musculoskeletal pain in Swedish police: associations with discomfort from wearing mandatory equipment and prolonged sitting. International archives of occupational and environmental health. 2018 May 1;91(4):425-33.
- 16. Shivakumara BS, Sridhar V. Study of vibration and its effect on health of the motorcycle rider. online Journal of health and allied sciences. 2010 Jul 30;9(2).
- 17. Mirbod SM, Inaba R, Iwata H. Subjective symptoms among motorcycling traffic policemen. Scandinavian journal of work, environment & health. 1997 Feb 1:60-3.
- Mohamad D, Md Deros B, Daruis DD, Khamis NK, Tahir NH. Assessment of handarm vibration exposure among motorcyclist in Malaysia. InApplied Mechanics and Materials 2014 (Vol. 663, pp. 395-399). Trans Tech Publications Ltd.
- Roseiro LM, Neto MA, Amaro AM, Alcobia CJ, Paulino MF. Hand-arm and whole-body vibrations induced in cross motorcycle and bicycle drivers. International Journal of Industrial Ergonomics. 2016 Nov 1;56:150-60.

- 20. Matsumoto T, Yokomori M, Harada N, Fukuchi Y, Kanamori M, Gotoh M. Mailmen's vibration hazards induced by motorcycle riding. Industrial health. 1982;20(3):167-75.
- 21. Karmegam K, Sapuan SM, Ismail MY, Ismail N, Bahri MS, Seetha P. Motorcyclist's riding discomfort in malaysia: Comparison of BMI, riding experience, riding duration and riding posture. Human Factors and Ergonomics in Manufacturing & Service Industries. 2013 Jul;23(4):267-78.
- 22. Jagannath M, Balasubramanian V. Assessment of early onset of driver fatigue using multimodal fatigue measures in a static simulator. Applied ergonomics. 2014 Jul 1;45(4):1140-7.