文章编号:1003-2754(2025)02-0137-06

doi:10. 19845/j. cnki. zfysjjbzz. 2025. 0027

脑白质病变对帕金森病相关症状的影响

赵 爱, 宋 逍, 李星君综述, 白 晶审校

摘 要: 帕金森病(PD)是一种常见的神经系统变性疾病,在老年群体中发病率较高,其发生机制复杂,涉及 α -突触核蛋白错误折叠和聚集、线粒体功能障碍、神经炎症、氧化应激等,对运动症状和非运动症状方面造成不同 损害,对患者的生活质量产生了恶劣影响。脑白质病变(WML)是大脑中枢神经系统髓鞘组织损害所致的神经系统变性疾病,发生机制包括内皮损伤、脑白质低灌注、血脑屏障受损。WML对PD患者姿势不稳、步态障碍、运动迟缓等产生不同程度的损害,对PD患者的认知功能、睡眠、焦虑、抑郁、自主神经功能等均产生了一定的负面作用。本文对PD的发病机制、WML的发病机制、WML对PD运动症状和非运动症状的损害机制或影响方面进行综述,以期待阐述WML和PD之间的关系。

关键词: 帕金森病; 脑白质病变; 运动症状; 非运动症状

中图分类号: R742.5 文献标识码: A

Effect of cerebral white matter lesion on the symptoms of Parkinson disease ZHAO Ai, SONG Xiao, LI Xingjun, et al. (Department of Neurology, The First Hospital of Jilin University, Changchun 130021, China)

Abstract: Parkinson's disease (PD) is a common neurodegenerative disease with a high incidence rate in the elderly population, and its complex pathogenesis involves α -synuclein misfolding and aggregation, mitochondrial dysfunction, neuroinflammation, and oxidative stress, resulting in different impairments of motor and non-motor symptoms and a bad influence on the quality of life of patients. White matter lesion (WML) is a neurodegenerative disease caused by damage to myelin sheath tissue in the central nervous system of the brain, with the pathogenesis of endothelial damage, hypoperfusion of brain white matter, and impairment of blood-brain barrier. WML causes varying degrees of impairment in postural instability, gait disturbance, and motor retardation in PD patients and exerts a certain degree of negative effects on cognitive function and sleep, anxiety, depression, and autonomic nervous function in PD patients. This article reviews the pathogenesis of PD and WML and the damage or influence of WML on the motor and non-motor symptoms of PD, in order to elaborate on the association between WML and PD.

Key words: Parkinson disease; White matter lesion; Motor symptoms; Non-motor symptoms

帕金森病(Parkinson disease, PD)是老年人群中常见的一种进行性神经系统变性疾病,临床主要表现为运动迟缓、静止性震颤、肌强直等。常伴发认知障碍、焦虑抑郁、睡眠障碍等非运动功能症状。PD病理特征是黑质纹状体多巴胺能神经元变性和路易体(Lewy body, LB)中广泛神经元内α-突触核蛋白(α-synuclein,α-syn)聚集。PD的发病机制错综复杂,包含氧化应激、线粒体功能障碍、神经炎症、铁代谢异常等□,上述机制共同作用导致黑质多巴胺能神经元死亡,对PD患者造成不可逆转的损伤。

脑白质病变(white matter lesions, WML)是脑小血管病最普遍的类型之一,是指大脑中枢神经系统髓鞘组织损害所致的神经系统变性疾病,由 Hachinski等^[2]提出,在MRI T₂WI 和 FLAIR 序列上表现为高信号。WML 根据解剖部位差异将其分为深部白质病变(deep white matter lesions, DWML)和脑室旁白质病变(paraventricular white matter lesions, PVWML),灌注不足、血脑屏障功能障碍、内皮损伤

等是WML的重要机制。

1 帕金森的发病机制

1.1 α-突触核蛋白异常聚集 α-syn异常聚集 生成神经毒性作用破坏多巴胺能神经元,神经毒性变 化引发毒性低聚物和原纤维的形成,通过突触功能异 常、线粒体损伤、内质网和高尔基体功能缺陷以及细 胞核功能障碍导致 PD 相关神经变性^[3]。α-syn 翻译 后修饰包括磷酸化、泛素化、硝化等,这些修饰有利于 寡聚化^[4],使其修饰后具有神经毒性,修饰后可能改 变部分酶活性影响多巴胺的合成。α-syn低聚物神经 变性与蛋白酶体效应、神经胶质和炎症反应、突触功 能异常、膜损伤、细胞自噬和溶酶体功能受损相关^[5]。 α-syn低聚物的神经毒性源于它们既能改变生物膜的 稳定性,又能干扰线粒体蛋白的功能^[6]。

收稿日期:2024-04-15;修订日期:2024-07-12

作者单位:(吉林大学白求恩第一医院神经内科,吉林长春 130021)

通信作者:白 晶,E-mail:baijing@jlu.edu.cn

- 1.2 氧化应激 氧化应激 (oxidative stress, OS)是由于细胞内氧化与抗氧化作用失衡,产生大量活性氧(reactive oxygen species, ROS)和自由基物质。铁死亡、线粒体功能障碍、神经炎症、a-syn异常聚集等导致氧化应激发生[7]。当细胞的抗氧化能力降低时,抗氧化体系清除自由基能力减低,自由基会导致产生多巴胺的细胞严重损害和死亡。线粒体是ROS产生的核心部位,是ROS介导损伤的对象[8]。黑质多巴胺神经元能量需求较高,可能与无髓鞘轴突传导有关[9],当发生氧化应激时,ATP供应不足,不能满足黑质多巴胺能神经元能量需求,造成神经元损伤。
- 1.3 线粒体功能 线粒体维持神经元高能量需求,活性氧产生增加、线粒体自噬、电子呼吸链传递障碍、线粒体 DNA 突变都可以损坏线粒体^[10]。α-syn在其N末端具有线粒体靶向序列,其作用是指导细胞核编码的蛋白转运到线粒体中^[11],α-syn通过使用不同的易位蛋白跨越线粒体,破坏线粒体蛋白的输入,由此参与线粒体功能障碍介导的多巴胺能神经元丢失^[12]。α-syn聚集能够阻断线粒体复合物I的活性,进而造成ATP合成受损并且可以通过细胞内钙超载引诱线粒体发生去极化和生成自由基,最终使细胞死亡^[13]。
- 1.4 神经炎症 小胶质细胞分布在黑质(substantia nigra, SN)和纹状体中,在PD中,小胶质细胞活化可能由α-syn错误折叠和聚集、β淀粉样蛋白和Tau蛋白低聚物的内源性刺激、病原体或环境毒素引发^[14]。活化的小胶质细胞能够分泌炎症介质,炎症细胞因子会破坏神经元并促进小胶质细胞活化,导致促炎和神经变性的循环^[15]。活化的星形胶质细胞有神经毒性功能,随即杀死多巴胺能神经元和分化成熟的少突胶质细胞^[16]。
- 1.5 铁代谢异常 铁参与蛋白质合成、DNA 复制、膜蛋白构成、髓鞘神经递质的合成并且是酶的辅助因子,但是神经细胞中铁的稳态失衡会产生神经毒性,细胞内铁的积聚引发毒性脂质过氧化物 ROS升高[17]。ROS在细胞内迅速生成,脂质过氧化,引诱SN神经元细胞死亡[18]。a-syn可能参与铁死亡的过程,a-syn低聚物诱导膜内的 ROS 和脂质过氧化,导致低聚物-膜相互作用的增加,从而导致钙内流,造成细胞死亡[19]。

2 脑白质病变的发生机制

2.1 内皮损伤 软脑膜动脉深穿支属终末动脉是皮下白质供血动脉,膜下动脉的脉络膜动脉和

纹状体动脉终末支小动脉是脑室旁白质的供血动脉,侧支循环较差,当出现脑小血管病变或血流动力学发生变化时,白质区域血流量灌注不足,进而发生WML^[20]。内皮功能障碍是WML发生的第一步,小血管内皮损伤时,导致小血管内膜增厚、管腔狭窄,导致白质区供血小动脉灌注不足,是WML发生发展的基础。

- 2.2 血-脑屏障损伤 血-脑屏障(blood-brain barrier, BBB)控制调动大脑和血液之间的物质运动,由内皮细胞、星形胶质细胞、周细胞、基底膜等组成,BBB损伤使β淀粉样蛋白(amyloidβ-protein, Aβ)清除率下降,纤维蛋白原、神经毒性物质等渗透到血管壁和脑实质之间,损害内皮细胞和神经纤维,致使神经元损伤,从而形成WML。BBB受损可以通过兴奋性神经毒性、氧化应激、炎症等相关途径,谷氨酸、钙离子、炎症细胞因子亦能损伤BBB,BBB内皮细胞通透性增加,从而增加血液和大脑之间物质的运动,导致WML^[21]。
- 2.3 β淀粉样蛋白和Tau蛋白 β淀粉样蛋白 沉积在皮质动脉和软脑膜动脉和静脉壁内,影响形 成神经血管单元(neurovascular unit,NVU)的细胞的 功能^[22]。NVU由内皮细胞、周细胞、星形胶质细胞、 小胶质细胞和神经元组成。Aβ以炎性斑块的形式 沉积,经神经毒性作用对神经细胞产生损坏,导致 WML发生。Tau蛋白发生异常磷酸化时,其上述功 能紊乱并且异常磷酸化的 Tau蛋白沉积,构成神经 原纤维缠结,损害神经元^[23]。
- 2.4 细胞自噬 脑白质由神经纤维、轴突及神经胶质细胞构成,小胶质细胞为维持髓鞘完整性和髓鞘再生提供营养支持,也影响 BBB 的通透性^[24]。严重的慢性脑灌注不足,可触发小胶质细胞自噬,其吞噬功能下降,影响小胶质细胞从脑实质中消除 Aβ 的能力,进而影响 WML^[25]。星形胶质细胞释放髓前因子,促进髓鞘和 BBB 的形成和维持,也通过髓前因子与少突胶质细胞沟通^[26]。
- 2.5 基因遗传 随着基因技术的发展, COL4A1基因、NOTCH3基因、TREX1基因、HTRA1基 因、COX-2基因等相继被提出。NOTCH3变异可导致 常染色体显性动脉病伴皮质下梗死和白质脑病发 生^[27],其具体机制有待深入研究。

3 脑白质病变和帕金森病共性作用

路易神经突是α-syn聚集形成病理学的轴突表现,可能轴突损伤后,出现轴突或周围髓磷脂的微观结构变化与PD中WML有关^[28]。PD患者白质损伤

与全身炎症增加有关,可能是PD中的变异神经元损 伤及其后续过程^[29]。氧化应激在PD神经元变性中 有重要作用,由于PD血流量减低且髓鞘轴突的加速 破坏,WML容易受到氧化应激的影响,破坏WML的 结构完整性[30]。直立性低血压是PD中晚期常见的 非运动症状,可导致脑灌注不足,脑内小血管继发缺 血性改变,导致脑白质损伤。脑内低灌注和血脑屏 障损伤是WML的重要致病原因,同时能够损伤神经 血管单元(neurovascular unit, NVU)功能, NVU功能 障碍影响神经元变性和死亡,白质损伤伴有BBB渗 漏,这可能会增加PD的风险[31]。伴有中重度WML 的PD患者的纹状体多巴胺转运体数量显著减少,提 示 WML 可能参与 PD 患者多巴胺系统的改变,进而 影响PD疾病的发展。白质纤维束提供了大脑内的 信息传递,使分布式神经网络被组织起来,注意力、 记忆、语言、视觉空间技能和执行功能等多方面功能 被合并与髓鞘系统的结构连接密切相关[32]。WML 临床表现在很大程度上取决于病变位置,皮质-皮质 关联纤维、跨半球的纤维、连接大脑皮质与丘脑、脑 桥、小脑系统的纤维在白质的功能发挥重要作用[33]。 WML在PD中的症状与白质纤维束的走行、分布联 系密切。PD中白质的区域活性和功能连通性,与正 常人相比,PD患者左侧中央后回和左侧壳核内的功 能连接异常增加,PD患者的白质功能网络表现出小 世界性异常增加[34]。此外,白质病变面积可作为神 经影像生物标志物,用于诊断和预测早期PD的 发生[35]。

4 脑白质病变对帕金森病运动症状的影响

在运动症状中,发现以姿势和步态功能障碍为 特征的轴向运动障碍与WML密切相关,正常的姿势 和步态受皮质-基底神经节-脑干环路调节[36]。该回 路分为:直接环路,皮质-纹体-苍白球内侧和黑质网 状部-丘脑-皮质;间接环路,皮质-纹体-苍白球外侧-底丘脑-苍白球内侧和黑质网状部-丘脑-皮质。 WML诱导的皮质之间或皮质与皮质下之间的异常 相互作用可能导致PD姿势和步态异常。脑白质由 神经纤维、髓鞘、轴突、神经胶质细胞等构成,其庞大 的神经纤维可形成复杂的信号传递网络,WML的产 生大多与大脑半球白质区损害或神经纤维中断有 关,损伤的白质纤维会阻断基底神经节-丘脑皮质神 经环路[37],相关传导信号被迫中断,引发PD患者相 关运动功能障碍。WML在PD中发挥了重要致病作 用,与PD患者的震颤及姿势步态障碍症状的产生显 著相关[38]。Lee等[39]研究显示,DWML与PD患者的

运动迟缓和中轴症状相关。Sinan等^[40]研究显示,WML与PD患者姿势步态和认知功能障碍的发生相关联。WML与多巴胺能神经元受损相关,WML可以导致纹状体中的多巴胺显著减少,造成PD运动功能缺陷^[41]。WML对PD运动症状的不利影响与纹状体多巴胺转运蛋白可用性轻度降低状态下的轴向运动损伤有关^[42]。运动皮质下WML轴突进行性定向障碍,神经丝节段性地被α-syn取代,髓鞘少突胶质细胞增大为其主要机制,并且运动网络的适应性结构变化与多巴胺丢失有关,适应性结构变化影响越来越多的皮质和白质细胞,产生PD的运动症状^[43]。最近的研究也证明^[44],WML与PD运动障碍、认知功能损害及生活质量下降相关。

PD 静止性震颤可能于小脑-丘脑-皮质(Cerebellum-thalamus-cortex, CTC)通路相关。震颤型PD的CTC通路的白质束发生了广泛弥散变化,这表明WML能影响CTC通路,CTC通路参与PD静止性震颤^[45]。在震颤型PD中,发现CTC通路沿线区域的灰质丢失^[46],证明CTC通路的结构连通性的缺失,对震颤发生具有重要意义。

步态冻结(frozen gait, FOG)是PD常见最具备致 残性的病理步态。PD-FOG 患者的白质损伤呈分布 模式,包括胼胝体的半球间连接,扣带的皮质-皮质 束,上纵束和额枕下束等,WML会影响长距离联络 纤维,这些纤维通常联络两个半球额叶之间的整合 和右半球皮质区域之间的半球内链接,参与高级步 态控制的多个大脑区域的白质恶化以及运动、认知 和边缘结构之间白质整合的丧失最终可能导致 FOG^[47]。PD-FOG的存在与脚桥核(pedunculopontine nucleus, PPN)、皮质-脑桥-小脑通路和视觉颞区 之间的脑网络改变有关[48]。PPN与小脑、丘脑、基底 核、黑质、大脑皮质等拥有广泛的传入和传出联络, 大量的胆碱能、谷氨酸能神经元分布在PPN尾部, PPN尾部神经元与下游的脑桥、延髓和脊髓的网状 结构联络,参与PD姿势与步态的调节。在人的大脑 内主要有两个胆碱能投射来源,一个是PPN对丘脑 的胆碱能投射,另一个是 Meynert 基底核向大脑皮质 的胆碱能投射,相关研究表明PPN损害与FOG的发 生有关[49]。

5 脑白质病变对帕金森病非运动症状的影响

5.1 认知功能障碍 认知功能减退是PD患者常见的高级皮质功能受损的临床表现之一,包括注意力、执行功能、记忆、言语和视觉感知方面的损害^[50]。有研究表明WML加重PD患者的认知功能

障碍程度[51]。皮质厚度和白质病变体积与PD的认 知表现相关[52]。脑室周围 WML 和额叶 WML 影响 PD认知功能,前者主要影响认知表现水平,后者影 响注意力、工作记忆、执行功能领域,WML的损伤大 多是直接形成的,但WML能通过纹状体多巴胺转 运蛋白的可用性参与PD认知障碍[53]。多巴胺能缺 乏中断额叶-纹状体网络的调节也与认知障碍有关, 额叶和后皮质区域的白质连接中断与额叶执行功 能障碍相关[54]。PD性痴呆患者胆碱能途径内WML 程度增加,并且与额叶执行功能和注意力的下降相 关[55],这也间接表明WML能影响胆碱能系统,进而 影响PD认知障碍的发生。胼胝体(corpus callosum, CC)作为大脑最大的白质束,CC的破坏对认知能力 下降具有重要作用。CC微结构白质异常可能通过 破坏跨半球联合纤维和胼胝体-皮质投射纤维的信 息传递而导致PD认知障碍[56]。上纵束、下额枕束、 扣带、下纵束和胼胝体及其白质连接参与PD相关 认知障碍[57]。PWML反映连接更远处皮质间及基 底节区与大脑皮质间的长纤维的连接受损。PWML 与认知功能障碍进展速度相关,但是WML对认知 的影响在DWML患者中更突出[58]。Mak等[59]研究 发现,PD认知功能障碍与PWML相关,而与DWML 无明显关联性,对于DWML和PWML对PD认知障 碍的争议还需要进一步验证。

5.2 睡眠障碍 PD涉及广泛的睡眠障碍,包 括阻塞性睡眠暂停(obstructive sleep apnea, OSA)、不 宁腿综合征、快速眼球运动睡眠期行为障碍(rapideye-movement sleep behavior disorder, RBD)[60]。 大脑 区域(眶额叶皮质、前额叶皮质、边缘上回、左楔前 叶)的脑白质体积变化与睡眠持续时间相关[61]。睡 眠质量差可能会破坏髓鞘轴突完整性,损伤白质[62]。 相关研究表明睡眠质量与额叶,颞和枕回的白质结 构有关,证实了特定大脑白质结构的变化可能与睡 眠不佳有关[63]。PD RBD 患者 WML 的变化情况[64], 与无RBD的患者相比,其左扣带、前枕下束、双侧皮 质脊髓束和小脑中脚的微结构白质改变,扣带的中 断会影响PD患者的视觉空间处理、记忆和睡眠功能 障碍。OSA能增加WML的风险,可能是缺氧相关的 氧化应激导致的,有研究证明与年龄相关的白质变 化与OSA相关[65]。

5.3 自主神经功能障碍 自主神经功能障碍 是PD的非运动特征之一,扣带有许多从扣带回突出 的白质束,参与了PD自主神经功能^[57],此外PD患者 扣带回及其白质对调节情绪、工作和计划记忆、注意 力和视觉空间技能方面起着关键作用。有研究报道,胃肠道功能障碍和男性性功能障碍可能与小脑中脚、双侧扣带、胼胝体白质束损伤相关^[66,67]。

5.4 抑郁、焦虑 焦虑、抑郁是PD患者症状的一部分,约40%的PD患者会出现情绪障碍^[68]。PD发生焦虑可能与蓝斑和去甲肾上腺素能通路中神经元丢失有关,脑内的一些结构如杏仁核、岛叶、尾状核可能参与其中^[69]。PD伴有抑郁(PD Depression,PD-D)患者的多巴胺受体减少,MRI发现PD-D患者皮质边缘区白质减少,皮质边缘区与多巴胺调节情绪密切相关^[70]。WML可能导致眶额叶功能障碍,眶额叶白质体积减少与情绪和情绪的调节有关。白质阻断额叶皮质与边缘纹状体区域间的活动,可能会使杏仁核的功能失效,最终导致情绪不稳定^[71]。PD-D患者在胼胝体,右前冠辐射和扣带的左海马部分表现出微观结构损伤,海马体是边缘系统的一部分,参与情绪处理和记忆形成和认知等^[72,73]。

6 总结与展望

WML与PD之间具有密切联系,有共通的病理生理机制,WML参与了PD的运动、认知、睡眠、自主神经功能障碍的发展过程,WML影响PD临床症状的具体机制尚未完全清楚,需要更多的临床研究进一步阐释,但不可否认的是WML是PD重要的影像学标志,关注WML在影像学上的表现,识别和评估WML,可能为早期诊断PD提供一定的诊断依据,为临床上早期预测PD的症状和尽早采取应对措施具有支持作用。

利益冲突声明: 所有作者均声明不存在利益 冲突。

作者贡献声明: 赵爱负责撰写论文; 宋逍负责 论文选题和设计; 李星君负责资料收集; 白晶负责论 文审阅并最后定稿。

「参考文献]

- Jankovic J, Tan EK. Parkinson's disease: etiopathogenesis and treatment [J]. J Neurol Neurosurg Psychiatry, 2020, 91 (8): 795-808.
- [2] Hachinski VC, Potter P, Merskey H. Leuko-araiosis [J]. Arch Neurol, 1987, 44(1): 21-23.
- [3] Madsen DA, Schmidt SI, Blaabjerg M, et al. Interaction between parkin and α-synuclein in PARK2-mediated Parkinson's disease [J]. Cells, 2021, 10(2): 283.
- [4] Barrett PJ, Timothy Greenamyre J. Post-translational modification of α -synuclein in Parkinson's disease[J]. Brain Res, 2015, 1628 (PtB): 247-253.
- [5] Bengoa-Vergniory N, Roberts RF, Wade-Martins R, et al. Alphasynuclein oligomers: a new hope [J]. Acta Neuropathol, 2017, 134

- (6): 819-838.
- [6] Fusco G, Chen SW, Williamson PTF, et al. Structural basis of membrane disruption and cellular toxicity by α-synuclein oligomers [J]. Science, 2017, 358(6369): 1440-1443.
- [7] Dionísio PA, Amaral JD, Rodrigues CMP. Oxidative stress and regulated cell death in Parkinson's disease [J]. Ageing Res Rev, 2021, 67: 101263.
- [8] Puspita L, Chung SY, Shim JW. Oxidative stress and cellular pathologies in Parkinson's disease[J]. Mol Brain, 2017, 10(1): 53.
- [9] Pissadaki EK, Bolam JP. The energy cost of action potential propagation in dopamine neurons: clues to susceptibility in Parkinson's disease[J]. Front Comput Neurosci, 2013, 7: 13.
- [10] Shoshan-Barmatz V, de Pinto V, Zweckstetter M, et al. VDAC, a multi-functional mitochondrial protein regulating cell life and death [J]. Mol Aspects Med, 2010, 31(3): 227-285.
- [11] Robotta M, Gerding HR, Vogel A, et al. Alpha-synuclein binds to the inner membrane of mitochondria in an α-helical conformation [J]. Chembiochem, 2014, 15(17): 2499-2502.
- [12] Haque ME, Akther M, Azam S, et al. Targeting α-synuclein aggregation and its role in mitochondrial dysfunction in Parkinson's disease[J]. Br J Pharmacol, 2022, 179(1): 23-45.
- [13] Ganguly G, Chakrabarti S, Chatterjee U, et al. Proteinopathy, oxidative stress and mitochondrial dysfunction: cross talk in Alzheimer's disease and Parkinson's disease [J]. Drug Des Devel Ther, 2017, 11: 797-810.
- [14] Zaman V, Shields DC, Shams R, et al. Cellular and molecular pathophysiology in the progression of Parkinson's disease [J]. Metab Brain Dis, 2021, 36(5): 815-827.
- [15] Pajares M, I Rojo A, Manda G, et al. Inflammation in Parkinson's disease: mechanisms and therapeutic implications [J]. Cells, 2020, 9(7): 1687.
- [16] Liddelow SA, Guttenplan KA, Clarke LE, et al. Neurotoxic reactive astrocytes are induced by activated microglia [J]. Nature, 2017, 541(7638): 481-487.
- [17] Mahoney-Súnchez L, Bouchaoui H, Ayton S, et al. Ferroptosis and its potential role in the physiopathology of Parkinson's disease [J]. Prog Neurobiol, 2021, 196: 101890.
- [18] 赵 喆, 鲍秀琦, 张 丹. 铁死亡调控机制及其在帕金森病中的研究进展[J]. 药学学报, 2019, 54(3): 399-406.
- [19] Angelova PR, Choi ML, Berezhnov AV, et al. Alpha synuclein aggregation drives ferroptosis: an interplay of iron, calcium and lipid peroxidation [J]. Cell Death Differ, 2020, 27(10): 2781-2796.
- [20] Bernbaum M, Menon BK, Fick G, et al. Reduced blood flow in normal white matter predicts development of leukoaraiosis [J]. J Cereb Blood Flow Metab, 2015, 35(10): 1610-1615.
- [21] Rajeev V, Fann DY, Dinh QN, et al. Pathophysiology of blood brain barrier dysfunction during chronic cerebral hypoperfusion in vascular cognitive impairment [J]. Theranostics, 2022, 12 (4): 1639-1658.
- [22] Sagare AP, Bell RD, Zlokovic BV. Neurovascular defects and faulty amyloid-β vascular clearance in Alzheimer's disease[J]. J Alzheimers Dis, 2013, 33 Suppl(1): S87-S100.

- [23] Johnson KG, Johnson DC. Cognitive dysfunction: another reason to treat obstructive sleep apnea in stroke patients [J]. Sleep Med, 2017, 33: 191-192.
- [24] Amor S, McNamara NB, Gerrits E, et al. White matter microglia heterogeneity in the CNS[J]. Acta Neuropathol, 2022, 143(2): 125-141.
- [25] Bordeleau M, ElAli A, Rivest S. Severe chronic cerebral hypoperfusion induces microglial dysfunction leading to memory loss in AP-Pswe/PS1 mice[J]. Oncotarget, 2016, 7(11): 11864-11880.
- [26] Molina-Gonzalez I, Miron VE. Astrocytes in myelination and remyelination[J]. Neurosci Lett, 2019, 713: 134532.
- [27] Stellingwerff MD, Nulton C, Helman G, et al. Early-onset vascular leukoencephalopathy caused by bi-allelic NOTCH₃ variants
 [J]. Neuropediatrics, 2022, 53(2): 115-121.
- [28] Picconi B, Piccoli G, Calabresi P. Synaptic dysfunction in Parkinson's disease[J]. Adv Exp Med Biol, 2012, 970: 553-572.
- [29] Chiang PL, Chen HL, Lu CH, et al. White matter damage and systemic inflammation in Parkinson's disease[J]. BMC Neurosci, 2017, 18(1): 48.
- [30] Dalfó E, Portero-Otín M, Ayala V, et al. Evidence of oxidative stress in the neocortex in incidental Lewy body disease [J]. J Neuropathol Exp Neurol, 2005, 64(9): 816-830.
- [31] Zhu Y, Du R, He Z, et al. Assessing the association between white matter lesions and Parkinson's disease [J]. Neurol Sci, 2023, 44(3): 897-903.
- [32] Filley CM, Fields RD. White matter and cognition: making the connection[J]. J Neurophysiol, 2016, 116(5): 2093-2104.
- [33] Schmahmann JD, Smith EE, Eichler FS, et al. Cerebral white matter: neuroanatomy, clinical neurology, and neurobehavioral correlates[J]. Ann N Y Acad Sci, 2008, 1142: 266-309.
- [34] Ji GJ, Ren C, Li Y, et al. Regional and network properties of white matter function in Parkinson's disease [J]. Hum Brain Mapp, 2019, 40(4): 1253-1263.
- [35] Zhang Q, Wang H, Shi Y, et al. White matter biomarker for predicting de novo Parkinson's disease using tract-based spatial statistics: a machine learning-based model [J]. Quant Imaging Med Surg, 2024, 14(4): 3086-3106.
- [36] Nutt JG, Horak FB, Bloem BR. Milestones in gait, balance, and falling[J]. Mov Disord, 2011, 26(6): 1166-1174.
- [37] Nigro S, Riccelli R, Passamonti L, et al. Characterizing structural neural networks in de novo Parkinson disease patients using diffusion tensor imaging [J]. Hum Brain Mapp, 2016, 37 (12): 4500-4510
- [38] Moccia M, Tedeschi E, Ugga L, et al. White matter changes and the development of motor phenotypes in de novo Parkinson's Disease[J]. J Neurol Sci, 2016, 367: 215-219.
- [39] Lee YH, Lee WJ, Chung SJ, et al. Microstructural connectivity is more related to cognition than conventional MRI in Parkinson's disease[J]. J Parkinsons Dis, 2021, 11(1): 239-249.
- [40] Sinani O, Dadouli K, Ntellas P, et al. Association between white matter lesions and Parkinson's disease: an impact on Postural/Gait difficulty phenotype and cognitive performance [J]. Neurol Res, 2022, 44(12): 1122-1131.

- [41] Lee MJ, Kim SL, Kim HI, et al. ^[18F]FP-CIT PET study in parkinsonian patients with leukoaraiosis [J]. Parkinsonism Relat Disord, 2015, 21(7): 704-708.
- [42] Jeong SH, Lee HS, Jung JH, et al. White matter hyperintensities, dopamine loss, and motor deficits in de novo Parkinson's disease[J]. Mov Disord, 2021, 36(6): 1411-1419.
- [43] Fu Y, Zhou L, Li H, et al. Adaptive structural changes in the motor cortex and white matter in Parkinson's disease[J]. Acta Neuropathol, 2022, 144(5): 861-879.
- [44]杜 静,吴铁好,严孙宏,等. 脑白质病变与帕金森病患者临床症状的相关性研究[J]. 重庆医科大学学报,2024,49(5):558-562.
- [45] Luo C, Song W, Chen Q, et al. White matter microstructure damage in tremor-dominant Parkinson's disease patients [J]. Neurora-diology, 2017, 59(7): 691-698.
- [46] Kassubek J, Juengling FD, Hellwig B, et al. Thalamic gray matter changes in unilateral Parkinsonian resting tremor: a voxelbased morphometric analysis of 3-dimensional magnetic resonance imaging[J]. Neurosci Lett, 2002, 323(1): 29-32.
- [47] Pietracupa S, Suppa A, Upadhyay N, et al. Freezing of gait in Parkinson's disease: gray and white matter abnormalities [J]. J Neurol, 2018, 265(1): 52-62.
- [48] Vercruysse S, Leunissen I, Vervoort G, et al. Microstructural changes in white matter associated with freezing of gait in Parkinson's disease[J]. Mov Disord, 2015, 30(4): 567-576.
- [49] Lewis SJG, Barker RA. A pathophysiological model of freezing of gait in Parkinson's disease [J]. Parkinsonism Relat Disord, 2009, 15(5): 333-338.
- [50] Aarsland D, Creese B, Politis M, et al. Cognitive decline in parkinson disease[J]. Nat Rev Neurol, 2017, 13(4): 217-231.
- [51] 李 倩, 钟 平. 帕金森病伴脑白质病变患者临床特征及危险 因素分析[J]. 临床荟萃, 2024, 39(3): 222-226.
- [52] Giehl K, Theis H, Ophey A, et al. Working memory training responsiveness in Parkinson's disease is not determined by cortical thickness or white matter lesions [J]. J Parkinsons Dis, 2024, 14 (2): 347-351.
- [53] Jeong SH, Lee HS, Jung JH, et al. Associations between white matter hyperintensities, striatal dopamine loss, and cognition in drug-naïve Parkinson's disease [J]. Parkinsonism Relat Disord, 2022, 97: 1-7.
- [54] Chung SJ, Kim YJ, Jung JH, et al. Association between white matter connectivity and early dementia in patients with parkinson disease[J]. Neurology, 2022, 98(18): e1846-e1856.
- [55] Shin J, Choi S, Lee JE, et al. Subcortical white matter hyperintensities within the cholinergic pathways of Parkinson's disease patients according to cognitive status [J]. J Neurol Neurosurg Psychiatry, 2012, 83(3): 315-321.
- [56] Bledsoe IO, Stebbins GT, Merkitch D, et al. White matter abnormalities in the corpus callosum with cognitive impairment in Parkinson disease[J]. Neurology, 2018, 91(24): e2244-e2255.
- [57] Duncan GW, Firbank MJ, Yarnall AJ, et al. Gray and white matter imaging: a biomarker for cognitive impairment in early Parkinson's disease?[J]. Mov Disord, 2016, 31(1): 103-110.

- [58] Ham JH, Yun HJ, Sunwoo MK, et al. Topography of cortical thinning associated with white matter hyperintensities in Parkinson's disease[J]. Parkinsonism Relat Disord, 2015, 21(4): 372-377.
- [59] Mak E, Dwyer MG, Ramasamy DP, et al. White matter hyperintensities and mild cognitive impairment in Parkinson's disease
 [J]. J Neuroimaging, 2015, 25(5): 754-760.
- [60] Zahed H, Zuzuarregui JRP, Gilron R, et al. The neurophysiology of sleep in Parkinson's disease [J]. Mov Disord, 2021, 36(7): 1526-1542.
- [61] Cheng W, Rolls E, Gong W, et al. Sleep duration, brain structure, and psychiatric and cognitive problems in children [J]. Mol Psychiatry, 2021, 26(8): 3992-4003.
- [62] Kocevska D, Cremers LGM, Lysen TS, et al. Sleep complaints and cerebral white matter: a prospective bidirectional study[J]. J Psychiatr Res, 2019, 112: 77-82.
- [63] Bai Y, Zhang L, Liu C, et al. Association of white matter volume with sleep quality: a voxel-based morphometry study[J]. Brain Imaging Behav, 2022, 16(3): 1163-1175.
- [64] Ansari M, Rahmani F, Dolatshahi M, et al. Brain pathway differences between Parkinson's disease patients with and without REM sleep behavior disorder[J]. Sleep Breath, 2017, 21(1): 155-161.
- [65] Choi KM, Thomas RJ, Yoon DW, et al. Interaction between obstructive sleep apnea and shortened telomere length on brain white matter abnormality[J]. Sleep, 2016, 39(9): 1639-1645.
- [66] Ashraf-Ganjouei A, Majd A, Javinani A, et al. Autonomic dysfunction and white matter microstructural changes in drug-naïve patients with Parkinson's disease[J]. PeerJ, 2018, 6: e5539.
- [67] 张 灿,陈 艳. 帕金森病胃肠动力障碍发病机制和治疗的研究进展[J]. 吉林大学学报(医学版),2024,50(1):280-287.
- [68] Reijnders JS, Ehrt U, Weber WE, et al. A systematic review of prevalence studies of depression in Parkinson's disease[J]. Mov Disord, 2008, 23(2); 183-189; quiz313.
- [69] 周 梦,司理想,陈 创,等. 帕金森病相关焦虑障碍的发病机制及治疗研究进展[J]. 中国老年学杂志,2018,38(3):753-756.
- [70] Kostić VS, Agosta F, Petrović I, et al. Regional patterns of brain tissue loss associated with depression in Parkinson disease [J]. Neurology, 2010, 75(10): 857-863.
- [71] Huang P, Xu X, Gu Q, et al. Disrupted white matter integrity in depressed versus non-depressed Parkinson's disease patients: a tract-based spatial statistics study[J]. J Neurol Sci, 2014, 346(1/2): 145-148.
- [72] Li Z, Liu W, Xiao C, et al. Abnormal white matter microstructures in Parkinson's disease and comorbid depression: a wholebrain diffusion tensor imaging study [J]. Neurosci Lett, 2020, 735: 135238.
- [73] 李杨丹钰, 李富佳, 刘 旭, 等. 血清 NFL、GFAP 水平与帕金森病患者焦虑抑郁的相关性研究[J]. 中风与神经疾病杂志, 2024, 41(11): 982-987

引证本文:赵 爱,宋 逍,李星君,等. 脑白质病变对帕金森病相关症状的影响[J]. 中风与神经疾病杂志,2025,42(2):137-142.