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Objective To develop a model based on a graph convolutional network (GCN) to achieve ef-
ficient classification of the cold and hot medicinal properties of Chinese herbal medicines
(CHMs).

Methods After screening the dataset provided in the published literature, this study includ-
ed 495 CHMs and their 8 075 compounds. Three molecular descriptors were used to repre-
sent the compounds: the molecular access system (MACCS), extended connectivity finger-
print (ECFP), and two-dimensional (2D) molecular descriptors computed by the RDKit open-
source toolkit (RDKit_2D). A homogeneous graph with CHMs as nodes was constructed and a
classification model for the cold and hot medicinal properties of CHMs was developed based
on a GCN using the molecular descriptor information of the compounds as node features. Fi-
nally, using accuracy and F1 score to evaluate model performance, the GCN model was ex-
perimentally compared with the traditional machine learning approaches, including decision
tree (DT), random forest (RF), k-nearest neighbor (KNN), Naive Bayes classifier (NBC), and
support vector machine (SVM). MACCS, ECFP, and RDKit_2D molecular descriptors were al-
so adopted as features for comparison.

Results The experimental results show that the GCN achieved better performance than the
traditional machine learning approach when using MACCS as features, with the accuracy and
F1 score reaching 0.836 4 and 0.845 3, respectively. The accuracy and F1 score have increased
by 0.8690 and 0.8120, respectively, compared with the lowest performing feature combina-
tion OMER (only the combination of MACCS, ECFP, and RDKit_2D). The accuracy and F1
score of DT, RF, KNN, NBC, and SVM are 0.505 1 and 0.501 8, 0.616 2 and 0.601 5, 0.676 8 and
0.624 3, 0.616 2 and 0.607 1, 0.636 4 and 0.622 5, respectively.

Conclusion In this study, by introducing molecular descriptors as features, it is verified that
molecular descriptors and fingerprints play a key role in classifying the cold and hot medici-
nal properties of CHMs. Meanwhile, excellent classification performance was achieved using
the GCN model, providing an important algorithmic basis for the in-depth study of the “struc-
ture-property” relationship of CHMs.
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1 Introduction

Chinese herbal medicines (CHMs), a unique branch of
TCM, have been used for over 5 000 years, and play an
important role in disease prevention and treatmentare,
mainly derived from plant materials ['. The concept of
the four properties of herbs in TCM theory explains
the mechanism of action and clinical application of
herbs, which provides a theoretical basis for drug com-
patibility .

With the advancements in biochemical and pharma-
cological research, modern science has begun analyzing
the molecular mechanisms of CHMs. For example,
through large-scale analyses, researchers have explored
the molecular basis of the medicinal properties of
herbs Fl. In addition to quantitative methods used to
characterize the cold and hot properties of herbs !}, vari-
ous research methods from the biological sciences were
employed to strengthen the scientific foundation of
CHMs. In particular, study has used bioinformatics meth-
ods to analyze the cold and hot properties of herbs .
Meanwhile, metabolomic technology has been applied to
the characterization of herbs .. The material basis of the
cold and hot medicinal properties of CHMs has been fur-
ther elucidated [\. However, conducting experiments us-
ing biology typically requires a substantial amount of
time and resources. The outcomes of these experiments
are influenced by various factors, making it challenging to
ensure the stability and reproducibility of the results.
Based on the above findings, WEI et al. ¥ proposed an in-
novative hypothesis that herbs containing similar sub-
stances may have similar cold and hot medicinal proper-
ties. To validate this hypothesis and explore the relation-
ship between herbal compounds and their cold and hot
properties, researchers have introduced machine learn-
ing techniques to the prediction of the cold and hot
medicinal properties of CHMs ', Although machine
learning has shown some potential in its initial attempts,
it still has limitations, including its high dependence on
the quantity and quality of training data and its inability
to deal with complex graph data. These limitations re-
strict its further application and development in classify-
ing medicinal properties.

Deep learning methods have been shown to outper-
form traditional machine learning methods in predicting
the quantum mechanical and physicochemical proper-
ties of molecules > %, These findings have also affected
research on the property classification of CHMs, in which
artificial intelligence algorithms have become a powerful
tool for exploring the complex relationship between the
ingredients and properties of CHMs [, Among them,
the graph convolutional network (GCN) [ has achieved
excellent performance in molecular property prediction
owing to its advantages in processing data with graph
structures ['*?2, A previous study successfully applied the
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cost-sensitive GCN model to explore the relationship be-
tween herbs and their meridians, demonstrating good re-
sults . This outcome not only verifies the applicability
of GCN in CHMs, but also provides valuable insights
for further research. Considering that the chemical
composition of herbs is the basis of their efficacy, the
classification of CHMs involves analyzing their chemical
compositions. Molecular characterization, as a crucial
link connecting herbal components to their properties, is
essential for predicting the properties of herbs and syn-
thesizing new compounds ¥, Therefore, the compound-
based study of the medicinal properties of CHMs using
GCN acts as a scientific method for exploring the action
mechanism of CHMs in depth. It aims to reveal the chem-
ical components related to the medicinal properties of
CHMs and elucidate the targets and trends of their ac-
tions on the organism. With sufficient knowledge of the
chemical components of CHMs, an urgent need exists for
a systematic method to identify the cold and hot proper-
ties of CHMs based on their compounds . Exploring the
relationship between the medicinal properties and the
structural composition of CHMs and constructing a sys-
tem for characterizing the medicinal components of
CHMSs can provide a new perspective for theoretical re-
search and scientific interpretation of the medicinal
properties of modern CHMs.

This study adopts a novel data representation method
that combines herbal compounds and their molecular
descriptors to generate node features and uses graph
neural networks (GNN) to classify the cold and hot prop-
erties of herbs from a chemical perspective, which can
more comprehensively capture the chemical properties
of herbal compounds.

2 Data and methods
2.1 CHMs dataset

The dataset used in this study was established by WANG
et al. '), which provides a comprehensive and integrated
resource, and includes 10 053 compounds from 647
herbs. The therapeutic qualities of CHMs can be broadly
classified into four categories: cool, cold, warm, and hot.
Another important therapeutic characteristic is neutral.
The properties of hot and cold are directly related to the
Yin and Yang of the body, where warm and hot belong to
Yang and cool and cold to Yin, demonstrating significant
impacts on the treatment of diseases. Moreover, warm
and cool medicinal properties could be further refined
based on the classification of hot and cold **, aiming to
describe the properties of herbs more accurately. In this
research, we categorized cold and cool herbs as cold, and
hot and warm herbs as hot. The existing information on
the properties of herbs was investigated and reorganized
to construct a dataset that meets the needs of this study.
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Overall, 257 herbs indicated hot properties; 238 herbs,
cold properties; 143 herbs, neutral properties, and 8
herbs, unidentified properties. If herbs with neutral and
unidentified properties were added to the model training,
it would result in a problem that some herbs might not be
categorized accurately, thereby affecting the overall mod-
el performance. Therefore, 143 herbs with neutral medic-
inal properties and 8 herbs without defined medicinal
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properties were removed. All compounds contained in
herbs were utilized in this study. The final dataset con-
tained 495 herbs with hot and cold medicinal properties,
and 8 075 compounds were labeled for use in the subse-
quent experiments. Table 1 presents the coding results. If
a particular compound is present in a particular herb, the
corresponding location is given to a value of 1, if not, a
value of 0.

Table 1 Datarepresentation in coded form of herbs and their compounds

Embedding
Herb name Property
1 2 3 4 8075
Yuanzhi (Polygalae Radix) Hot 0° 0 0 0 0
Shandougen (Sophorae Tonkinenses Radix et Rhizoma) Cold 0 0 0 1° 0
Zhizi (Gardeniae Fructus) Cold 0 0 0 0 1
Jigucao (Abri Herba) Cold 1 1 1 1 0

2 represents containing no compound labeled 0." represents containing a certain compound labeled 1.

2.2 Molecular descriptors

2.2.1 Overview of molecular descriptors In chemical re-
search, molecular descriptors are key tools for converting
the structural and property information of molecules into
quantifiable numerical representations. These descrip-
tors effectively simplify the expression of complex molec-
ular structures and properties, and convert them into
computer-processable data formats. Hence, they provide
a vital perspective for analyzing the similarities and dif-
ferences between molecules and predicting their proper-
ties. Contemporary research has shown that the proper-
ties of CHMs are directly related to their chemical com-
positions ], and molecular descriptors serve as a bridge
to link the chemical structure to traditional properties.
Molecular descriptors are commonly used to extract in-
formation regarding CHMs compounds. The structures of
compounds characterized by molecular fingerprints or
numerical values of descriptors may be directly related to
the hot and cold properties of herbs.

2.2.2 Selected descriptors Three distinct molecular fin-
gerprints and descriptors were used to represent drugs
in the dataset, which are widely used in studies of CHMs
compounds ' #!, In particular, the molecular access
system (MACCS) P, extended connectivity fingerprint
(ECFP) #, and two-dimensional (2D) molecular des-
criptors (RDKit_2D) were computed using the RDKit
open-source toolkit . Each of these techniques offers
different insights into chemical properties. As a binary
fingerprint, the MACCS is comprised of 166 segment defi-
nitions. Different molecular substructures are shown
in each segment. A 166-bit binary vector is produced by

setting a nonexistent location to 0 and an existing sub-
structure location to 1. The ECFP is a descriptor based on
a topological molecular fingerprint algorithm, which ab-
stracts the atomic and bond connections inside the
molecule as well as the frequency of ring substructures to
create a fixed-length binary vector. In this research, we
adopted ECFP6, where “6” indicates an atomic environ-
ment with a radius of three. A total of 2 048 molecular fin-
gerprints were obtained. The size of the extracted pieces
depends on the specified radius; larger radii extract larg-
er fragments, whereas smaller radii extract smaller frag-
ments. The third descriptor, RDKit_2D, is a set of physic-
ochemical descriptors related to molecular structures
that are used to quantify the structures and properties of
compounds. These descriptors cover a wide range of at-
tributes, such as the size, structure, and electrical charac-
teristics of a molecule. For example, the relative molecu-
lar mass, number of hydrogen bond acceptors, and hy-
drophobicity are included, and these descriptors are
commonly employed to analyze and compare molecules.

2.2.3 Feature combinations According to existing re-
search, the selection of atomic representation has a
marked impact on the model performance °'. The selec-
tion of the most appropriate feature subset for a specific
task is critical. In this study, the three molecular descrip-
tors (MACCS, ECFP6, and RDKit_2D) were used to con-
struct seven distinct descriptor combinations. Two cases
were considered: feature combinations without molecu-
lar descriptors and feature combinations with only
molecular descriptors. These feature combinations were
input into the model as node features along with the col-
lated compound data for training (Table 2).
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Table 2 Different combinations of molecular descrip-
tors for classifying the cold and hot properties of herbs

Name Combination of different features
Compound Compound
OMER MACCS, ECFP6, RDKit_2D
M Compound, MACCS
E Compound, ECFP6
R Compound, RDKit_2D
ME Compound, MACCS, ECFP6
MR Compound, MACCS, RDKit_2D
ER Compound, ECFP6, RDKit_2D
MER Compound, MACCS, ECFP6, RDKit_2D

2.3 Graph representation of the data

The graph is defined as G = (V, E, A), where V represents
the set of herb nodes, E represents the set of edges be-
tween herb nodes, and A is the adjacency matrix used to
represent the connection relationship between herb
nodes. The q;; denotes the weights and ¢;(e; € E) de-
notes the edges between herb nodes. It is assumed to be a
binary matrix, which is expressed as follows:

_Ja; Ife;eE
Aij = {0 Otherwise M

The degree matrix D of graph G, an n x n diagonal ma-
trix, v; (v; € V) denotes the herb nodes, is defined as fol-
lows:

deg(v,)) Ifi=j

D= {O ¢ Otherivise @)

In addition, a graph has the following properties:
(i) similar vector representations occur between adjacent
nodes; (ii) vector representations of nodes with compara-
ble characteristics are similar; (iii) vector representations
are unaffected by changes in the order of the nodes.

One problem that must be overcome when analyzing
CHMs and their compounds is the high complexity, aris-
ing from the many-to-many relationship; a single CHM
can contain many different compounds, and the same
compound can be found in many different herbs. Hence,
research on the compounds found in herbs should not be
limited to categorizing them according to their degree of
hot or cool they are. This simplified classification method
overlooks the complex interactions among the com-
pounds of CHMs; therefore, it does not accurately reflect
the true medicinal properties of CHMs.

Consequently, this study proposed an approach to
understanding the medicinal properties of herbs more
precisely. In recent studies, the treatment method for
determining the cold and hot properties of compounds
based on the cold and hot properties of CHMs faces the
issue that the same compound may be classified as differ-
ent cold and hot properties !'“. It is therefore necessary
to maintain the correlation between CHMs and their
chemical components for the classification of CHMs. The
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compound information provides the chemical basis of
CHMs, which is conducive to scientifically verifying the
rationality and validity of the classification of CHMs. We
constructed a graph using herbs as nodes and their
chemical molecular information (Figure 1), and calculat-
ed molecular descriptors as the characteristics of each
herb node. Complex graph-structured data containing in-
formation regarding the herbs and compounds were con-
structed as a consequence. This method can reveal the
complexity and medicinal properties of herbal ingredi-
ents and provide a more accurate scientific basis for in-
depth research into CHMs and their applications.

O Herb A Q Herb B

Compound 1

Compound 2| —
Compound 3 @

Compound 4|

e

Compound 1 €12

@ Compound 2 @

Compound 3
Compound 4

Figure 1 The mapping process of herb nodes and edges
Herb A and Herb B represent two herb nodes. The compounds
1 - 4 represent the compounds contained in Herb A and Herb B,
respectively. The blue rectangle in the figure represents that
these two herbs have partially identical compounds, and an
edge e, , has been added between V1 and V2.

2.4 GCN

GCN is a deep GNN-based representation learning archi-
tecture that defines the convolution operation using a
Laplacian matrix"”. A GCN primarily aims to extract the
spatial properties from a topological map, which adopts
the properties of the current node and first-order nodes to
characterize the new properties of the current node. The
prediction results of each node were influenced by near-
by nodes according to their association relationships.

The core concept of the GCN algorithm is to spectral-
ly decompose the Laplacian matrix spectrally; that is, to
decompose the matrix into a product of the correspond-
ing eigenvalues and eigenvectors. Eigen decomposition is
only possible for matrices that can be diagonalized or
have multiple linearly uncorrelated eigenvectors. In
graph representation learning, the Laplacian matrix is a
symmetric matrix defined as L=D-A, which is ex-
pressed as follows:

deg(v;)) Ifi=j
Lj=4¢ -1 If i # j and v, is adjacent to v; 3)
0 Otherwise

where D is a degree matrix representing the degree of
each herb node. Specifically, D is a diagonal matrix
whose diagonal elements d; represent the degrees of herb
node i, A is an adjacency matrix that represents the con-
nection between herb nodes, and L is the Laplacian
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matrix that represents the relationship between the herb
nodes. The Laplacian matrix can be used to transform the
features as follows:

L =2L[ A —1 “

where A,,, is the maximum eigenvalue of the Laplacian
matrix and I the identity matrix. This transformation
maps the eigenvalues of the Laplacian matrix to the inter-
val [-1, 1] to make the calculation more stable. The trans-
formed Laplacian matrix is normalized as follows:

1 1
L™ =D2L'D™ )

1
where D2 denotes the inverse square root of matrix D.
The GCN convolution operation is expressed as fol-
lows:

H" =0 (D‘%AD'%H(“W(’)) ©)

Here, H? denotes the herb node feature matrix of lay-
er I, o the activation function, W the weight matrix of
layer I, A = A+, the adjacency matrix summed with the
matrix of self-loops, and D the degree matrix whose diag-
0~n.':111~e~lerlnents are A. In the GCN convolution operation,
D™2AD™2 normalizes the adjacency matrix such that the
eigenvalue of each herb node is affected by its neighbor-
ing nodes, and H”W" represents the linear transforma-
tion of herb node features to obtain a new feature repre-
sentation. By repeatedly stacking the GCN convolutional
layers, a deep GNN model can be obtained for perform-
ing various tasks on the graph data.

The final GCN model is expressed as follows:

Z = f(X,A) = softmax (AReLU (AXW“’)) W“)) o

where Z is the output result, A = A + I the updated adja-
cency matrix, and / the identity matrix. W and W are
learnable weight matrices, and the input herb node fea-
ture matrix X was multiplied by the weight matrix W to
obtain the intermediate feature representation. The fea-
ture representation was multiplied by A to perform a
ReLU activation function operation, following which the
results were multiplied by the weight matrix W to ob-
tain the final feature representation. The feature repre-
sentation was then normalized using softmax to obtain
the final CHMSs classification result. The GCN structure
employed in this study is shown in Figure 2. And the
workflow of the GCN was used to classify the cold and hot
properties of herbs (Figure 3).

2.5 Evaluation indices

The accuracy and F1 score were used to evaluate the per-
formance of the model in classification tasks. This study
evaluates the performance of the proposed GCN model
with five traditional machine learning algorithms in the
task of cold and hot classification of herbs using accuracy
and F1 score. These five traditional machine learning
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Input Hidden layer Output
Herb Feature vectors
Sa s o oI Y,
O ReLU! ReLU [RRERS
o e
X=H" Z=H"

Figure 2 GCN network structure

Herb compounds Node feature (compounds) Herb node
N
L
o E‘ N
e — |
1
e m
( -
3 S Oom
; Im (O " w
Molecular descriptors SR
|
Herb
4 map

| .
o %%*ﬁ un

GCN model Adjacency Feature
matrix matrix

Figure 3 Flowchart of GCN-based classification of the
cold and hot properties of herbs

1, calculation of the molecular descriptors of the compounds.
2, conversion of compounds into vectors. 3, formation of herb
nodes with molecular descriptors and edges based on shared
compounds. 4, collection of adjacency and feature matrices.
5, input of matrices into the GCN model. 6, output results of the
model.

algorithms are decision tree (DT), random forest (RF), k-
nearest neighbor (KNN), Naive Bayes classifier (NBC),
and support vector machine (SVM). The true categories
of the samples are cold and hot. Here, the positive class
which consists of herbs was classified as having cold
properties, and the negative class which consists of herbs
as having hot properties. The number of true positives
(TP) represents the number of herbs with cold properties
predicted by the model with cold properties. The num-
ber of false negatives (FN) represents the number of
herbs with cold properties predicted by the model with
having hot properties. The number of false positives (FP)
represents the number of herbs with hot properties pre-
dicted by the model with cold properties. Finally, the
number of true negatives (TN) represents the number of
herbs with hot properties predicted by the model with hot
properties.

Accuracy is the proportion of correctly classified sam-
ples relative to the total number of samples and is calcu-
lated as follows:

TP +TN
TP+FN+FP+TN

Accuracy =

®)

The F1 score combined the precision and recall of
the model and was used to measure the balanced
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performance for positive and negative samples. The pre-
cision evaluated the number of positive samples predict-
ed by the model as actually positive, indicating the accu-
racy of the model’s prediction of positive examples. Re-
call assessed the proportion of samples correctly predict-
ed as positive by the model among all true positive sam-
ples as well as the predicted positive samples of the mod-
el. These metrics are defined as follows:

.. TP
Precision = ——— ©)
TP+ FP
TP
Recall= ———— (10)
TP +FN
2 X Precision X Recall
F1 score = (11)

Precision + Recall
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3 Results
3.1 Impacts of molecular descriptors

We compared the performances of different combina-
tions of molecular descriptors as features using cross-
validation with different folds. The experimental results
indicated that the best results were achieved with 10-fold
cross-validation (Table 3). When using combination M
(Compound, MACCS) as model input, the accuracy and
F1 score were maximized, achieving values of 0.836 4 +
0.020 6 and 0.845 3 + 0.021 9, respectively. The perfor-
mance generated when using the combination OMER
(only the combination of MACCS, ECFP, and RDKit_2D) to
represent features was poor, yielding accuracy and F1 sco-
res 0f 0.749 5+ 0.026 3 and 0.764 1 + 0.025 8, respectively.

Table 3 Accuracy and F1 score of different feature combinations

Name Accuracy F1 score
3-fold 5-fold 10-fold 3-fold 5-fold 10-fold
Compound 0.7811+0.0190 0.8040+0.0218 0.8283+0.0111 0.7884+0.0166 0.8160+0.0193 0.8377+0.0114
OMER 0.7104+0.0415 0.7374+0.0326 0.7495%+0.0263 0.7233+0.0325 0.7527+0.0309 0.7641+0.0258
M 0.7710+0.0265 0.7980+0.0192 0.8364+0.0206 0.7776+0.0273 0.8085+0.0175 0.8453+0.0219
E 0.7643+0.0048 0.7657+0.0391 0.8162+0.0174 0.7724+0.0102 0.7770+0.0369 0.8259+0.0197
R 0.7710+0.0454 0.8061+0.0340 0.8283+0.0247 0.7837+0.0406 0.8192+0.0282 0.8395+0.0257
ME 0.7508+0.0095 0.7960+0.0225 0.8222+0.0158 0.7582+0.0061 0.8096+0.0221 0.8352+0.0177
MR 0.7643+0.0454 0.8020+0.0187 0.8333+0.0323 0.7759+0.0418 0.8128+0.0188 0.8426+0.0343
ER 0.7508+0.0312 0.8040+0.0297 0.8071+0.0269 0.7588+0.0367 0.8142+0.0300 0.8212+0.0254
MER 0.7609+0.0390 0.7758+0.0225 0.7990+0.0385 0.7721+0.0347 0.7894+0.0182 0.8108+0.0370

3.2 Comparison of different models

This section presents a comparison of the proposed
GCN model with five traditional machine-learning algo-
rithms: DT, RF, KNN, NBC, and SVM (Figure 4). The
experimental results showed that the performance met-
rics of the GCN method were significantly superior to
those of the traditional machine learning algorithms. In
most feature combinations, RF and SVM indicated the
second-best performance, while DT performs poorly.
The GCN model has end-to-end learning capabilities and
can learn node representations and classification models
directly from the original node features and adjacency
matrices. In contrast, traditional machine learning algo-
rithms often require manual feature extraction, which
may generate human bias and limit the model perfor-
mance. Furthermore, these traditional algorithms often
have difficulty processing graph-structured data due
to the focus on processing traditional tabular data and
the failure to capture complex relationships in the graph
data.

A 085 » RF
+« DT
0.80 + KNN
v+ SVM
7 0.75 T NBC
£0.70 A « GCN
3 e A A T3
2065 VAN 2.
L L S
055t “ VARG
0.50 . “
eéég(%@ AR & @Q’@Q’ Q%
K" O
&
B 09 < RF
+ DT
0.8 4+— KNN
v SVM
o + NBC
§ 0.7 . « GCN
E 06l o AT T
o5t © Tt et
0.4
o@(@@é&'@ < Q’&@Q’@Q‘&%
INEY
S

Figure 4 Comparison of the accuracy and F1 score with
different methods

A, accuracy. B, F1 score.
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4 Discussion
4.1 Impact of molecular descriptors

CHMs are complex drugs that contain many active
molecules with highly diverse chemical structures. As a
result, selecting appropriate molecular descriptors is cru-
cial for studying CHMs. Different molecular descriptors
can extract the characteristics of molecules from differ-
ent perspectives, including but not limited to, atomic in-
formation, structural topology, and charge distribution 2,
Integration of these diverse molecular descriptors into
the node characteristics of a molecular graph constituted
by herbs can help describe the structures and properties
of herbal molecules more comprehensively.

Here, we explored the performance of each descrip-
tor in the classification models in depth by evaluating the
selection of three different molecular descriptors. The ex-
perimental results indicated that the MACCS fingerprint
outperformed the ECFP6 when used to describe the com-
pounds in CHMs. These findings emphasize the crucial
importance of compound structural information in clas-
sifying the cold and hot properties of herbs. As the ECFP6
contains a 2 048-bit vector, much larger than the 166-bit
MACCS fingerprint, it may introduce features that are ir-
relevant to the classification of cold and hot properties,
thereby interfering with the recognition and learning of
key features of the model and possibly decreasing the ac-
curacy. Additionally, the RDKit_2D descriptor performed
better than the ECFP6, as it contains multiple key fea-
tures and properties, such as the molecular mass, charge,
aromaticity, number of alicyclic rings, and relative molec-
ular mass, which are important factors for classifying the
cold and hot properties of herbs [". Molecular descriptors
were used to convert the structural information of the
chemical components of herbs into numerical features,
which can facilitate the rapid and accurate extraction of
key molecular characteristics, thereby enhancing the ef-
fectiveness of reflecting the chemical composition of the
herbs.

Therefore, comparing the prediction accuracy, stabili-
ty, and interpretability of different molecular descriptors
is key to optimizing the model performance. Such com-
parisons are also of great significance for understanding
the activity and functions of herb molecules. Further re-
search on the impact of the selection of molecular de-
scriptors on the classification model results will promote
the model performance and provide key guidance for the
optimal design of herbal molecules and the discovery of
new drugs.

4.2 Advantages of GCN in the classification

Compared with traditional machine learning methods,
the GCN showed significant advantages in processing
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graph data, serving as an approach for identifying poten-
tial common patterns of cold and hot properties within
big datasets of compounds .. In particular, the GCN can
effectively handle the many-to-many relationships among
herbs and important compounds in the analyses of
herbal compounds, because the constructed herb repre-
sentation graph is a complex structure comprising many
herb nodes and the interaction edges between them. In
this structure, each node represents an herb, and the
edges demonstrate the co-occurrence of compounds in
different herbs. Traditional machine-learning methods
often fail to directly process graph-structured data. The
GCN continuously updates the representation of each
node by iteratively aggregating the features of neighbor-
ing nodes and by fusing local neighborhood information
and node features in the graph. This aggregation process
enables each node to obtain information from surround-
ing nodes and effectively integrate this information into
its own representation. Thus, a GCN can accurately cap-
ture the interactions and relationships among herbs and
compounds.

4.3 Future works and challenges

Integrating different molecular descriptors into the node
features of the herb representation graph can significant-
ly improve the classification model results, increasing the
accuracy and efficiency of research on herbal molecules
and providing essential support for the application and
development of herbal molecules. In the future, this clas-
sification model could be applied to other key topics in
the field of CHMs, such as the classification of herb effica-
cy, thereby expanding its application scope. In summary,
the use of GNN techniques to classify the cold and hot
properties of herbs has far-reaching research implica-
tions and potential applications in the field of CHMs. As
the GNN technology continues to mature and gain popu-
larity in the field of artificial intelligence, its potential ap-
plications in the field of CHMs will expand. Continuous
improvement and expansion of this method are antici-
pated to provide more precise and comprehensive sup-
port for the research and application of herbs. This is ex-
pected to promote further development and innovation
in the field of TCM. Unfortunately, not all constituent
compounds of a herb could be fully recognized. More-
over, each compound in herbal medicine is typically used
individually in experiments, but interactions may occur
and the main contributions between constituent com-
pounds are not well understood. Given that the present
study only considered the use of compounds in deter-
mining the connectivity between CHMs and in analyzing
the medicinal properties of CHMs from the perspective of
compounds, it cannot be separated from the compounds
themselves. Looking ahead, the addition of compound
nodes and the enhancement of attention mechanism
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learning within the model could be considered. This
would enable the model to identify nodes with a greater
impact on the medicinal properties of CHMs among the
many compound nodes and adjust the weight of the con-
nection between the nodes accordingly.

5 Conclusion

An effective classification model was successfully devel-
oped by training and validation on the herb compound
dataset in this study, which has significant effects on
studies and practical applications of the cold and hot
properties of herbs. These results will promote the under-
standing and expansion of the mechanism of CHMs.
Many studies of disease mechanisms have focused on the
effects of CHMs on cell proliferation and toxicity. By veri-
fying the feasibility of classifying the medicinal proper-
ties of CHMs based on compounds, the nature and struc-
ture of CHMs compounds can be analyzed. These find-
ings allow for understanding and exploring the action of
the CHMs mechanism.
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