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Objective   To develop a model based on a graph convolutional network (GCN) to achieve ef-

ficient  classification  of  the  cold  and  hot  medicinal  properties  of  Chinese  herbal  medicines

(CHMs).

Methods   After screening the dataset provided in the published literature, this study includ-

ed 495 CHMs and their  8  075  compounds.  Three  molecular  descriptors  were  used to  repre-

sent  the  compounds:  the  molecular  access  system  (MACCS),  extended  connectivity  finger-

print (ECFP), and two-dimensional (2D) molecular descriptors computed by the RDKit open-

source toolkit (RDKit_2D). A homogeneous graph with CHMs as nodes was constructed and a

classification model for the cold and hot medicinal properties of CHMs was developed based

on a GCN using the molecular descriptor information of the compounds as node features. Fi-

nally,  using accuracy  and F1 score  to  evaluate  model  performance,  the  GCN model  was  ex-

perimentally compared with the traditional machine learning approaches, including decision

tree  (DT),  random forest  (RF),  k-nearest  neighbor  (KNN),  Naïve  Bayes  classifier  (NBC),  and

support vector machine (SVM). MACCS, ECFP, and RDKit_2D molecular descriptors were al-

so adopted as features for comparison.

Results   The experimental results show that the GCN achieved better performance than the

traditional machine learning approach when using MACCS as features, with the accuracy and

F1 score reaching 0.836 4 and 0.845 3, respectively. The accuracy and F1 score have increased

by 0.869 0 and 0.812 0,  respectively,  compared  with  the  lowest  performing  feature  combina-

tion  OMER  (only  the  combination  of  MACCS,  ECFP,  and  RDKit_2D).  The  accuracy  and  F1

score of DT, RF, KNN, NBC, and SVM are 0.505 1 and 0.501 8, 0.616 2 and 0.601 5, 0.676 8 and

0.624 3, 0.616 2 and 0.607 1, 0.636 4 and 0.622 5, respectively.

Conclusion   In this study, by introducing molecular descriptors as features, it is verified that

molecular descriptors and fingerprints play a key role in classifying the cold and hot medici-

nal properties of CHMs. Meanwhile, excellent classification performance was achieved using

the GCN model, providing an important algorithmic basis for the in-depth study of the “struc-

ture-property” relationship of CHMs.
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1 Introduction

Chinese  herbal  medicines  (CHMs),  a  unique  branch  of
TCM,  have  been  used  for  over  5  000  years,  and  play  an
important  role  in  disease  prevention  and  treatmentare,
mainly  derived  from  plant  materials [1].  The  concept  of
the  four  properties  of  herbs  in  TCM  theory  explains
the  mechanism  of  action  and  clinical  application  of
herbs,  which  provides  a  theoretical  basis  for  drug  com-
patibility [2].

With  the  advancements  in  biochemical  and pharma-
cological  research,  modern  science  has  begun  analyzing
the  molecular  mechanisms  of  CHMs.  For  example,
through  large-scale  analyses,  researchers  have  explored
the  molecular  basis  of  the  medicinal  properties  of
herbs [3].  In  addition  to  quantitative  methods  used  to
characterize the cold and hot properties of herbs [4], vari-
ous  research  methods  from  the  biological  sciences  were
employed  to  strengthen  the  scientific  foundation  of
CHMs. In particular, study has used bioinformatics meth-
ods  to  analyze  the  cold  and  hot  properties  of  herbs [5].
Meanwhile, metabolomic technology has been applied to
the characterization of herbs [6]. The material basis of the
cold and hot medicinal properties of CHMs has been fur-
ther elucidated [7].  However,  conducting experiments us-
ing  biology  typically  requires  a  substantial  amount  of
time  and  resources.  The  outcomes  of  these  experiments
are influenced by various factors, making it challenging to
ensure  the  stability  and  reproducibility  of  the  results.
Based on the above findings, WEI et al. [8] proposed an in-
novative  hypothesis  that  herbs  containing  similar  sub-
stances may have similar cold and hot medicinal proper-
ties. To validate this hypothesis and explore the relation-
ship  between  herbal  compounds  and  their  cold  and  hot
properties,  researchers  have  introduced  machine  learn-
ing  techniques  to  the  prediction  of  the  cold  and  hot
medicinal  properties  of  CHMs [9-11].  Although  machine
learning has shown some potential in its initial attempts,
it  still  has  limitations,  including  its  high  dependence  on
the quantity  and quality  of  training data  and its  inability
to  deal  with  complex  graph  data.  These  limitations  re-
strict its further application and development in classify-
ing medicinal properties.

Deep  learning  methods  have  been  shown  to  outper-
form traditional machine learning methods in predicting
the  quantum  mechanical  and  physicochemical  proper-
ties  of  molecules [12, 13].  These  findings  have  also  affected
research on the property classification of CHMs, in which
artificial intelligence algorithms have become a powerful
tool  for  exploring  the  complex  relationship  between  the
ingredients  and  properties  of  CHMs [14-16].  Among  them,
the graph convolutional  network (GCN) [17] has  achieved
excellent  performance  in  molecular  property  prediction
owing  to  its  advantages  in  processing  data  with  graph
structures [18-22]. A previous study successfully applied the

cost-sensitive GCN model to explore the relationship be-
tween herbs and their meridians, demonstrating good re-
sults [23].  This  outcome  not  only  verifies  the  applicability
of  GCN  in  CHMs,  but  also  provides  valuable  insights
for  further  research.  Considering  that  the  chemical
composition  of  herbs  is  the  basis  of  their  efficacy,  the
classification  of  CHMs  involves  analyzing  their  chemical
compositions.  Molecular  characterization,  as  a  crucial
link connecting herbal components to their properties, is
essential  for  predicting  the  properties  of  herbs  and  syn-
thesizing new compounds [24].  Therefore, the compound-
based  study  of  the  medicinal  properties  of  CHMs  using
GCN  acts  as  a  scientific  method  for  exploring  the  action
mechanism of CHMs in depth. It aims to reveal the chem-
ical  components  related  to  the  medicinal  properties  of
CHMs  and  elucidate  the  targets  and  trends  of  their  ac-
tions  on  the  organism.  With  sufficient  knowledge  of  the
chemical components of CHMs, an urgent need exists for
a systematic method to identify the cold and hot proper-
ties of CHMs based on their compounds [25]. Exploring the
relationship  between  the  medicinal  properties  and  the
structural  composition  of  CHMs  and  constructing  a  sys-
tem  for  characterizing  the  medicinal  components  of
CHMs  can  provide  a  new  perspective  for  theoretical  re-
search  and  scientific  interpretation  of  the  medicinal
properties of modern CHMs.

This study adopts a novel data representation method
that  combines  herbal  compounds  and  their  molecular
descriptors  to  generate  node  features  and  uses  graph
neural networks (GNN) to classify the cold and hot prop-
erties  of  herbs  from  a  chemical  perspective,  which  can
more  comprehensively  capture  the  chemical  properties
of herbal compounds. 

2 Data and methods
 

2.1 CHMs dataset

The dataset used in this study was established by WANG
et al. [15], which provides a comprehensive and integrated
resource,  and  includes  10  053  compounds  from  647
herbs. The therapeutic qualities of CHMs can be broadly
classified into four categories:  cool,  cold,  warm, and hot.
Another  important  therapeutic  characteristic  is  neutral.
The properties of  hot and cold are directly related to the
Yin and Yang of the body, where warm and hot belong to
Yang and cool and cold to Yin, demonstrating significant
impacts  on  the  treatment  of  diseases.  Moreover,  warm
and  cool  medicinal  properties  could  be  further  refined
based  on  the  classification  of  hot  and  cold [26],  aiming  to
describe  the  properties  of  herbs  more  accurately.  In  this
research, we categorized cold and cool herbs as cold, and
hot  and  warm  herbs  as  hot.  The  existing  information  on
the properties of herbs was investigated and reorganized
to construct a dataset that meets the needs of  this study.
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Overall,  257  herbs  indicated  hot  properties;  238  herbs,

cold  properties;  143  herbs,  neutral  properties,  and  8

herbs,  unidentified  properties.  If  herbs  with  neutral  and

unidentified properties were added to the model training,

it would result in a problem that some herbs might not be

categorized accurately, thereby affecting the overall mod-

el performance. Therefore, 143 herbs with neutral medic-

inal  properties  and  8  herbs  without  defined  medicinal

properties  were  removed.  All  compounds  contained  in

herbs  were  utilized  in  this  study.  The  final  dataset  con-

tained 495 herbs with hot and cold medicinal properties,

and 8 075 compounds were labeled for use in the subse-

quent experiments. Table 1 presents the coding results. If

a particular compound is present in a particular herb, the

corresponding  location  is  given  to  a  value  of  1,  if  not,  a

value of 0.

 
 

Table 1   Data representation in coded form of herbs and their compounds

Herb name Property
Embedding

1 2 3 4 … 8 075

Yuanzhi (Polygalae Radix) Hot 0a 0 0 0 … 0

Shandougen (Sophorae Tonkinenses Radix et Rhizoma) Cold 0 0 0 1b … 0

Zhizi (Gardeniae Fructus) Cold 0 0 0 0 … 1

··· ··· ··· ··· ··· ··· ··· ···

Jigucao (Abri Herba) Cold 1 1 1 1 … 0

a represents containing no compound labeled 0. b represents containing a certain compound labeled 1.
 
 

2.2 Molecular descriptors
 

2.2.1 Overview of molecular descriptors　In chemical re-
search, molecular descriptors are key tools for converting
the structural and property information of molecules into
quantifiable  numerical  representations.  These  descrip-
tors effectively simplify the expression of complex molec-
ular  structures  and  properties,  and  convert  them  into
computer-processable data formats. Hence, they provide
a  vital  perspective  for  analyzing  the  similarities  and  dif-
ferences between molecules and predicting their proper-
ties.  Contemporary  research  has  shown  that  the  proper-
ties  of  CHMs  are  directly  related  to  their  chemical  com-
positions [27],  and molecular descriptors serve as a bridge
to  link  the  chemical  structure  to  traditional  properties.
Molecular  descriptors  are  commonly  used  to  extract  in-
formation regarding CHMs compounds. The structures of
compounds  characterized  by  molecular  fingerprints  or
numerical values of descriptors may be directly related to
the hot and cold properties of herbs. 

2.2.2 Selected descriptors　Three distinct  molecular  fin-
gerprints  and  descriptors  were  used  to  represent  drugs
in the dataset, which are widely used in studies of CHMs
compounds [14, 23].  In  particular,  the  molecular  access
system  (MACCS) [28],  extended  connectivity  fingerprint
(ECFP) [29],  and  two-dimensional  (2D)  molecular  des-
criptors  (RDKit_2D)  were  computed  using  the  RDKit
open-source  toolkit [30].  Each  of  these  techniques  offers
different  insights  into  chemical  properties.  As  a  binary
fingerprint, the MACCS is comprised of 166 segment defi-
nitions.  Different  molecular  substructures  are  shown
in  each  segment.  A  166-bit  binary  vector  is  produced  by

setting  a  nonexistent  location  to  0  and  an  existing  sub-
structure location to 1. The ECFP is a descriptor based on
a topological  molecular  fingerprint  algorithm,  which ab-
stracts  the  atomic  and  bond  connections  inside  the
molecule as well as the frequency of ring substructures to
create  a  fixed-length  binary  vector.  In  this  research,  we
adopted  ECFP6,  where “6” indicates  an  atomic  environ-
ment with a radius of three. A total of 2 048 molecular fin-
gerprints  were obtained.  The size of  the extracted pieces
depends on the specified radius; larger radii extract larg-
er  fragments,  whereas  smaller  radii  extract  smaller  frag-
ments. The third descriptor, RDKit_2D, is a set of physic-
ochemical  descriptors  related  to  molecular  structures
that are used to quantify the structures and properties of
compounds.  These  descriptors  cover  a  wide  range  of  at-
tributes, such as the size, structure, and electrical charac-
teristics of a molecule. For example, the relative molecu-
lar  mass,  number  of  hydrogen  bond  acceptors,  and  hy-
drophobicity  are  included,  and  these  descriptors  are
commonly employed to analyze and compare molecules. 

2.2.3 Feature  combinations　 According  to  existing  re-
search,  the  selection  of  atomic  representation  has  a
marked impact on the model performance [31]. The selec-
tion of  the most  appropriate  feature  subset  for  a  specific
task is critical. In this study, the three molecular descrip-
tors  (MACCS,  ECFP6,  and  RDKit_2D)  were  used  to  con-
struct  seven distinct  descriptor  combinations.  Two cases
were  considered:  feature  combinations  without  molecu-
lar  descriptors  and  feature  combinations  with  only
molecular  descriptors.  These  feature  combinations  were
input into the model as node features along with the col-
lated compound data for training (Table 2). 
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2.3 Graph representation of the data

ai j ei j ei j ∈ E

The graph is defined as G = (V, E, A), where V represents
the  set  of  herb  nodes, E represents  the  set  of  edges  be-
tween herb nodes, and A is the adjacency matrix used to
represent  the  connection  relationship  between  herb
nodes.  The  denotes  the  weights  and ( )  de-
notes the edges between herb nodes. It is assumed to be a
binary matrix, which is expressed as follows:

Ai j =

{
ai j If ei j ∈ E
0 Otherwise (1)

vi vi ∈ V
The degree matrix D of graph G, an n × n diagonal ma-

trix,  ( )  denotes  the  herb  nodes,  is  defined  as  fol-
lows:

Di j =

{
deg(vi) If i = j
0 Otherwise (2)

In  addition,  a  graph  has  the  following  properties:
(i) similar vector representations occur between adjacent
nodes; (ii) vector representations of nodes with compara-
ble characteristics are similar; (iii) vector representations
are unaffected by changes in the order of the nodes.

One problem that must be overcome when analyzing
CHMs and their compounds is the high complexity, aris-
ing  from  the  many-to-many  relationship;  a  single  CHM
can  contain  many  different  compounds,  and  the  same
compound can be found in many different herbs. Hence,
research on the compounds found in herbs should not be
limited to categorizing them according to their degree of
hot or cool they are. This simplified classification method
overlooks  the  complex  interactions  among  the  com-
pounds of CHMs; therefore, it does not accurately reflect
the true medicinal properties of CHMs.

Consequently,  this  study  proposed  an  approach  to
understanding  the  medicinal  properties  of  herbs  more
precisely.  In  recent  studies,  the  treatment  method  for
determining  the  cold  and  hot  properties  of  compounds
based  on  the  cold  and  hot  properties  of  CHMs  faces  the
issue that the same compound may be classified as differ-
ent  cold  and  hot  properties [14].  It  is  therefore  necessary
to  maintain  the  correlation  between  CHMs  and  their
chemical components for the classification of CHMs. The

compound  information  provides  the  chemical  basis  of
CHMs,  which  is  conducive  to  scientifically  verifying  the
rationality  and validity  of  the classification of  CHMs.  We
constructed  a  graph  using  herbs  as  nodes  and  their
chemical molecular information (Figure 1), and calculat-
ed  molecular  descriptors  as  the  characteristics  of  each
herb node. Complex graph-structured data containing in-
formation regarding the herbs and compounds were con-
structed  as  a  consequence.  This  method  can  reveal  the
complexity  and  medicinal  properties  of  herbal  ingredi-
ents  and  provide  a  more  accurate  scientific  basis  for  in-
depth research into CHMs and their applications.
  

Compound 1
Compound 2
Compound 3
Compound 4

Compound 1
Compound 2
Compound 3
Compound 4

V1
V1

e1, 2

Herb A Herb B

V2
V2

 
Figure 1   The mapping process of herb nodes and edges
Herb A and Herb B represent two herb nodes. The compounds
1 – 4 represent the compounds contained in Herb A and Herb B,
respectively.  The  blue  rectangle  in  the  figure  represents  that
these  two  herbs  have  partially  identical  compounds,  and  an
edge e1, 2 has been added between V1 and V2.
  

2.4 GCN

GCN is a deep GNN-based representation learning archi-
tecture  that  defines  the  convolution  operation  using  a
Laplacian matrix [17].  A GCN primarily aims to extract the
spatial  properties  from  a  topological  map,  which  adopts
the properties of the current node and first-order nodes to
characterize the new properties of the current node. The
prediction results of each node were influenced by near-
by nodes according to their association relationships.

L = D−A

The core concept of the GCN algorithm is to spectral-
ly  decompose  the  Laplacian  matrix  spectrally;  that  is,  to
decompose the matrix into a product of  the correspond-
ing eigenvalues and eigenvectors. Eigen decomposition is
only  possible  for  matrices  that  can  be  diagonalized  or
have  multiple  linearly  uncorrelated  eigenvectors.  In
graph  representation  learning,  the  Laplacian  matrix  is  a
symmetric  matrix  defined  as ,  which  is  ex-
pressed as follows:

Li j =

deg(vi) If i = j
−1 If i , j and vi is adjacent to v j

0 Otherwise
(3)

di

where D is  a  degree  matrix  representing  the  degree  of
each  herb  node.  Specifically, D is  a  diagonal  matrix
whose diagonal elements  represent the degrees of herb
node i, A is an adjacency matrix that represents the con-
nection  between  herb  nodes,  and L is  the  Laplacian

 

Table  2   Different  combinations  of  molecular  descrip-
tors for classifying the cold and hot properties of herbs

Name Combination of different features
Compound Compound

OMER MACCS, ECFP6, RDKit_2D

M Compound, MACCS

E Compound, ECFP6

R Compound, RDKit_2D

ME Compound, MACCS, ECFP6

MR Compound, MACCS, RDKit_2D

ER Compound, ECFP6, RDKit_2D
MER Compound, MACCS, ECFP6, RDKit_2D
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matrix that represents the relationship between the herb
nodes. The Laplacian matrix can be used to transform the
features as follows:

L′ = 2L/λmax− I (4)

λmaxwhere  is  the  maximum  eigenvalue  of  the  Laplacian
matrix  and I the  identity  matrix.  This  transformation
maps the eigenvalues of the Laplacian matrix to the inter-
val [−1, 1] to make the calculation more stable. The trans-
formed Laplacian matrix is normalized as follows:

Lsym = D−
1
2 L′D−

1
2 (5)

D−
1
2where  denotes the inverse square root of matrix D.

The  GCN  convolution  operation  is  expressed  as  fol-
lows:

H(I+1) = σ
(

D̃−
1
2 ÃD̃−

1
2 H(I)W (I)

)
(6)

H(I)

I σ W (I)

I Ã = A+ In

D̃
Ã

D̃−
1
2 ÃD̃−

1
2

H(I)W (I)

Here,  denotes the herb node feature matrix of lay-
er ,  the  activation  function,  the  weight  matrix  of
layer ,  the adjacency matrix summed with the
matrix of self-loops, and  the degree matrix whose diag-
onal  elements  are .  In  the  GCN convolution operation,

 normalizes  the  adjacency  matrix  such  that  the
eigenvalue of each herb node is affected by its neighbor-
ing  nodes,  and  represents  the  linear  transforma-
tion of herb node features to obtain a new feature repre-
sentation.  By repeatedly stacking the GCN convolutional
layers,  a  deep  GNN  model  can  be  obtained  for  perform-
ing various tasks on the graph data.

The final GCN model is expressed as follows:

Z = f (X,A) = softmax
(
ÂReLU

(
ÂXW (0)

)
W (1)

)
(7)

Â = A+ I
I W (0) W (1)

X W (0)

Â
ReLU

W (1)

where Z is  the  output  result,  the  updated  adja-
cency matrix, and  the identity matrix.  and  are
learnable  weight  matrices,  and  the  input  herb  node  fea-
ture matrix  was multiplied by the weight matrix  to
obtain  the  intermediate  feature  representation.  The  fea-
ture  representation  was  multiplied  by  to  perform  a

 activation function operation,  following which the
results  were  multiplied  by  the  weight  matrix  to  ob-
tain  the  final  feature  representation.  The  feature  repre-
sentation  was  then  normalized  using  softmax  to  obtain
the  final  CHMs  classification  result.  The  GCN  structure
employed  in  this  study  is  shown  in Figure  2.  And  the
workflow of the GCN was used to classify the cold and hot
properties of herbs (Figure 3). 

2.5 Evaluation indices

The accuracy and F1 score were used to evaluate the per-
formance  of  the  model  in  classification  tasks.  This  study
evaluates  the  performance  of  the  proposed  GCN  model
with  five  traditional  machine  learning  algorithms  in  the
task of cold and hot classification of herbs using accuracy
and  F1  score.  These  five  traditional  machine  learning

algorithms are decision tree (DT), random forest (RF), k-
nearest  neighbor  (KNN),  Naïve  Bayes  classifier  (NBC),
and  support  vector  machine  (SVM).  The  true  categories
of  the  samples  are  cold  and  hot.  Here,  the  positive  class
which  consists  of  herbs  was  classified  as  having  cold
properties, and the negative class which consists of herbs
as  having  hot  properties.  The  number  of  true  positives
(TP) represents the number of herbs with cold properties
predicted  by  the  model  with  cold  properties.  The  num-
ber  of  false  negatives  (FN)  represents  the  number  of
herbs  with  cold  properties  predicted  by  the  model  with
having hot properties. The number of false positives (FP)
represents  the  number  of  herbs  with  hot  properties  pre-
dicted  by  the  model  with  cold  properties.  Finally,  the
number of  true negatives (TN) represents the number of
herbs with hot properties predicted by the model with hot
properties.

Accuracy is the proportion of correctly classified sam-
ples relative to the total number of samples and is calcu-
lated as follows:

Accuracy =
TP+TN

TP+FN+FP+TN
(8)

The  F1  score  combined  the  precision  and  recall  of
the  model  and  was  used  to  measure  the  balanced

 

Input

Herb Feature vectors

X = H(0) Z = H(N)

Hidden layer

ReLU ReLU
…

Output

Y1

 
Figure 2   GCN network structure
 

Herb compounds

Molecular descriptors

2

1

3

4

56Hot

Cold

Node feature (compounds) Herb node

Herb
map

Output
GCN model Adjacency

matrix
Feature
matrix

 
Figure  3   Flowchart  of  GCN-based  classification  of  the
cold and hot properties of herbs
1,  calculation  of  the  molecular  descriptors  of  the  compounds.
2,  conversion  of  compounds  into  vectors.  3,  formation  of  herb
nodes  with  molecular  descriptors  and  edges  based  on  shared
compounds.  4,  collection  of  adjacency  and  feature  matrices.
5, input of matrices into the GCN model. 6, output results of the
model.
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performance for positive and negative samples. The pre-

cision evaluated the number of positive samples predict-

ed by the model as actually positive, indicating the accu-

racy  of  the  model’s  prediction  of  positive  examples.  Re-

call assessed the proportion of samples correctly predict-

ed as positive by the model among all  true positive sam-

ples as well as the predicted positive samples of the mod-

el. These metrics are defined as follows:

Precision =
TP

TP+FP
(9)

Recall =
TP

TP+FN
(10)

F1 score =
2×Precision×Recall

Precision+Recall
(11)

 

3 Results
 

3.1 Impacts of molecular descriptors

We  compared  the  performances  of  different  combina-
tions  of  molecular  descriptors  as  features  using  cross-
validation  with  different  folds.  The  experimental  results
indicated that the best results were achieved with 10-fold
cross-validation  (Table  3).  When  using  combination  M
(Compound,  MACCS)  as  model  input,  the  accuracy  and
F1  score  were  maximized,  achieving  values  of  0.836  4  ±
0.020  6  and  0.845  3  ±  0.021  9,  respectively.  The  perfor-
mance  generated  when  using  the  combination  OMER
(only the combination of MACCS, ECFP, and RDKit_2D) to
represent features was poor, yielding accuracy and F1 sco-
res of 0.749 5 ± 0.026 3 and 0.764 1 ± 0.025 8, respectively.

 
 

Table 3   Accuracy and F1 score of different feature combinations

Name
Accuracy F1 score

3-fold 5-fold 10-fold 3-fold 5-fold 10-fold

Compound 0.781 1 ± 0.019 0 0.804 0 ± 0.021 8 0.828 3 ± 0.011 1 0.788 4 ± 0.016 6 0.816 0 ± 0.019 3 0.837 7 ± 0.011 4

OMER 0.710 4 ± 0.041 5 0.737 4 ± 0.032 6 0.749 5 ± 0.026 3 0.723 3 ± 0.032 5 0.752 7 ± 0.030 9 0.764 1 ± 0.025 8

M 0.771 0 ± 0.026 5 0.798 0 ± 0.019 2 0.836 4 ± 0.020 6 0.777 6 ± 0.027 3 0.808 5 ± 0.017 5 0.845 3 ± 0.021 9

E 0.764 3 ± 0.004 8 0.765 7 ± 0.039 1 0.816 2 ± 0.017 4 0.772 4 ± 0.010 2 0.777 0 ± 0.036 9 0.825 9 ± 0.019 7

R 0.771 0 ± 0.045 4 0.806 1 ± 0.034 0 0.828 3 ± 0.024 7 0.783 7 ± 0.040 6 0.819 2 ± 0.028 2 0.839 5 ± 0.025 7

ME 0.750 8 ± 0.009 5 0.796 0 ± 0.022 5 0.822 2 ± 0.015 8 0.758 2 ± 0.006 1 0.809 6 ± 0.022 1 0.835 2 ± 0.017 7

MR 0.764 3 ± 0.045 4 0.802 0 ± 0.018 7 0.833 3 ± 0.032 3 0.775 9 ± 0.041 8 0.812 8 ± 0.018 8 0.842 6 ± 0.034 3

ER 0.750 8 ± 0.031 2 0.804 0 ± 0.029 7 0.807 1 ± 0.026 9 0.758 8 ± 0.036 7 0.814 2 ± 0.030 0 0.821 2 ± 0.025 4

MER 0.760 9 ± 0.039 0 0.775 8 ± 0.022 5 0.799 0 ± 0.038 5 0.772 1 ± 0.034 7 0.789 4 ± 0.018 2 0.810 8 ± 0.037 0

 
 

3.2 Comparison of different models

This  section  presents  a  comparison  of  the  proposed

GCN  model  with  five  traditional  machine-learning  algo-

rithms:  DT,  RF,  KNN,  NBC,  and  SVM  (Figure  4).  The

experimental  results  showed  that  the  performance  met-

rics  of  the  GCN  method  were  significantly  superior  to

those  of  the  traditional  machine  learning  algorithms.  In

most  feature  combinations,  RF  and  SVM  indicated  the

second-best  performance,  while  DT  performs  poorly.

The GCN model has end-to-end learning capabilities and

can learn node representations and classification models

directly  from  the  original  node  features  and  adjacency

matrices.  In  contrast,  traditional  machine  learning  algo-

rithms  often  require  manual  feature  extraction,  which

may  generate  human  bias  and  limit  the  model  perfor-

mance.  Furthermore,  these  traditional  algorithms  often

have  difficulty  processing  graph-structured  data  due

to  the  focus  on  processing  traditional  tabular  data  and

the failure to capture complex relationships in the graph

data.
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Figure 4   Comparison of the accuracy and F1 score with
different methods
A, accuracy. B, F1 score.
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4 Discussion
 

4.1 Impact of molecular descriptors

CHMs  are  complex  drugs  that  contain  many  active
molecules  with  highly  diverse  chemical  structures.  As  a
result, selecting appropriate molecular descriptors is cru-
cial  for  studying  CHMs.  Different  molecular  descriptors
can  extract  the  characteristics  of  molecules  from  differ-
ent perspectives, including but not limited to, atomic in-
formation, structural topology, and charge distribution [32].
Integration  of  these  diverse  molecular  descriptors  into
the node characteristics of a molecular graph constituted
by herbs can help describe the structures and properties
of herbal molecules more comprehensively.

Here,  we  explored  the  performance  of  each  descrip-
tor in the classification models in depth by evaluating the
selection of three different molecular descriptors. The ex-
perimental  results  indicated  that  the  MACCS  fingerprint
outperformed the ECFP6 when used to describe the com-
pounds  in  CHMs.  These  findings  emphasize  the  crucial
importance  of  compound  structural  information  in  clas-
sifying the cold and hot properties of herbs. As the ECFP6
contains a 2 048-bit  vector,  much larger than the 166-bit
MACCS fingerprint, it  may introduce features that are ir-
relevant  to  the  classification  of  cold  and  hot  properties,
thereby  interfering  with  the  recognition  and  learning  of
key features of the model and possibly decreasing the ac-
curacy. Additionally, the RDKit_2D descriptor performed
better  than  the  ECFP6,  as  it  contains  multiple  key  fea-
tures and properties, such as the molecular mass, charge,
aromaticity, number of alicyclic rings, and relative molec-
ular mass, which are important factors for classifying the
cold and hot properties of herbs [7]. Molecular descriptors
were  used  to  convert  the  structural  information  of  the
chemical  components  of  herbs  into  numerical  features,
which  can  facilitate  the  rapid  and  accurate  extraction  of
key  molecular  characteristics,  thereby  enhancing  the  ef-
fectiveness  of  reflecting the chemical  composition of  the
herbs.

Therefore, comparing the prediction accuracy, stabili-
ty,  and interpretability  of  different  molecular  descriptors
is  key  to  optimizing  the  model  performance.  Such  com-
parisons  are  also  of  great  significance  for  understanding
the  activity  and  functions  of  herb  molecules.  Further  re-
search  on  the  impact  of  the  selection  of  molecular  de-
scriptors on the classification model results will  promote
the model performance and provide key guidance for the
optimal  design  of  herbal  molecules  and  the  discovery  of
new drugs. 

4.2 Advantages of GCN in the classification

Compared  with  traditional  machine  learning  methods,
the  GCN  showed  significant  advantages  in  processing

graph data, serving as an approach for identifying poten-
tial  common  patterns  of  cold  and  hot  properties  within
big datasets of compounds [33]. In particular, the GCN can
effectively handle the many-to-many relationships among
herbs  and  important  compounds  in  the  analyses  of
herbal  compounds,  because the constructed herb repre-
sentation graph is  a  complex structure comprising many
herb  nodes  and  the  interaction  edges  between  them.  In
this  structure,  each  node  represents  an  herb,  and  the
edges  demonstrate  the  co-occurrence  of  compounds  in
different  herbs.  Traditional  machine-learning  methods
often  fail  to  directly  process  graph-structured  data.  The
GCN  continuously  updates  the  representation  of  each
node  by  iteratively  aggregating  the  features  of  neighbor-
ing nodes and by fusing local neighborhood information
and node features in the graph. This aggregation process
enables each node to obtain information from surround-
ing  nodes  and  effectively  integrate  this  information  into
its own representation. Thus, a GCN can accurately cap-
ture the interactions and relationships among herbs and
compounds. 

4.3 Future works and challenges

Integrating different molecular descriptors into the node
features of the herb representation graph can significant-
ly improve the classification model results, increasing the
accuracy  and  efficiency  of  research  on  herbal  molecules
and  providing  essential  support  for  the  application  and
development of herbal molecules. In the future, this clas-
sification  model  could  be  applied  to  other  key  topics  in
the field of CHMs, such as the classification of herb effica-
cy, thereby expanding its application scope. In summary,
the  use  of  GNN  techniques  to  classify  the  cold  and  hot
properties  of  herbs  has  far-reaching  research  implica-
tions and potential  applications in the field of  CHMs.  As
the GNN technology continues to mature and gain popu-
larity in the field of artificial intelligence, its potential ap-
plications  in  the  field  of  CHMs  will  expand.  Continuous
improvement  and  expansion  of  this  method  are  antici-
pated  to  provide  more  precise  and  comprehensive  sup-
port for the research and application of herbs. This is ex-
pected  to  promote  further  development  and  innovation
in  the  field  of  TCM.  Unfortunately,  not  all  constituent
compounds  of  a  herb  could  be  fully  recognized.  More-
over, each compound in herbal medicine is typically used
individually  in  experiments,  but  interactions  may  occur
and  the  main  contributions  between  constituent  com-
pounds  are  not  well  understood.  Given  that  the  present
study  only  considered  the  use  of  compounds  in  deter-
mining the connectivity between CHMs and in analyzing
the medicinal properties of CHMs from the perspective of
compounds, it cannot be separated from the compounds
themselves.  Looking  ahead,  the  addition  of  compound
nodes  and  the  enhancement  of  attention  mechanism
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learning  within  the  model  could  be  considered.  This
would  enable  the  model  to  identify  nodes  with  a  greater
impact  on  the  medicinal  properties  of  CHMs  among  the
many compound nodes and adjust the weight of the con-
nection between the nodes accordingly. 

5 Conclusion

An  effective  classification  model  was  successfully  devel-
oped  by  training  and  validation  on  the  herb  compound
dataset  in  this  study,  which  has  significant  effects  on
studies  and  practical  applications  of  the  cold  and  hot
properties of herbs. These results will promote the under-
standing  and  expansion  of  the  mechanism  of  CHMs.
Many studies of disease mechanisms have focused on the
effects of CHMs on cell proliferation and toxicity. By veri-
fying  the  feasibility  of  classifying  the  medicinal  proper-
ties of CHMs based on compounds, the nature and struc-
ture  of  CHMs  compounds  can  be  analyzed.  These  find-
ings  allow for  understanding and exploring the action of
the CHMs mechanism. 
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基于图卷积网络的中药寒热属性分类研究

杨梦玲, 刘伟*

湖南中医药大学信息科学与工程学院, 湖南 长沙 410208, 中国

 
【摘要】目的  为了对中药寒热属性进行高效分类，提出了基于图卷积网络（GCN）的分类模型。方法  本研

究在对已发表文献提供的数据集进行筛选后，最后纳入了 495 种中药及其 8 075 个化合物数据。使用三种分

子描述符来表示化合物，分别是分子访问系统（MACCS）、扩展连通性指纹（ECFP）和 RDKit 开源工具包

计算的二维（2D）分子描述符（RDKit_2D），构建以中药为节点的同质图，并以化合物分子描述符信息为

节点特征，基于图卷积网络提出一种中药寒热属性分类模型。最后，采用准确率和 F1 值评估模型性能，将

GCN 模型与决策树（DT）、随机森林（RF）、K-邻近（KNN）、朴素贝叶斯（NBC）和支持向量机

（SVM）进行对比实验，并将 MACCS、ECFP 和 RDKit_2D 分子描述符作为特征进行对比实验。结果  实验

结果表明，相较于机器学习方法，GCN 取得了较好的性能，使用 MACCS 作为特征准确率和 F1 值分别达到

了 0.836 4 和 0.845 3，并且与性能最低的特征组合 OMER（仅是 MACCS、ECFP、RDKit_2D 的组合）相

比，准确率和 F1 值分别提升了 0.869 0 和 0.812 0。而 DT、RF、KNN、NBC 和 SVM 的准确率和 F1 值分别

为 0.505 1 和 0.501 8、0.616 2 和 0.601 5、0.676 8 和 0.624 3、0.616 2 和 0.607 1、0.636 4 和 0.622 5。结论  本

研究通过引入分子描述符作为特征，验证了在对中药寒热属性进行分类时，分子描述符与指纹起到了关键作

用。同时，利用 GCN 模型实现了出色的分类性能，为深入研究中药的“结构-性质”关系提供了重要的算法依据。

【关键词】中药；寒热药性；分子描述符；图卷积网络；药性分类
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