

Malaysian Journal of Microbiology

Published by Malaysian Society for Microbiology
(In SCOPUS since 2011)

Transposable elements: Uniqueness and applications

Cahyo Budiman, Rafida Razali, Abdul Ashraf Rasid, Kathrie Rubil and Mardani Abdul Halim*

Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah. Email: mardani@ums.edu.mv

ABSTRACT

The study of transposable genetic elements, a cornerstone of molecular genetics, offers profound insights into the dynamic nature of genetic material. This exploration encompasses various types found in bacteria, including insertion sequences, composite and non-composite transposons. These elements are instrumental in shaping bacterial genomes by facilitating the movement of genetic information, driving evolution and contributing to genetic diversity. Understanding the mechanisms of transposition is essential for unravelling the intricate processes governing genetic rearrangements. Replicative and conservative transposition mechanisms, exemplified by the Tn3 family and phage Mu, illustrate the remarkable adaptability of these systems in reshaping genomes. However, it is the transposon Tn5 that steals the spotlight as a versatile molecular genetics tool. Tn5s transposition mechanism, characterized by precise control over gene expression, translational regulation, protein localization and the induction of conditional mutations, empowers researchers to dissect gene regulation intricacies with unprecedented accuracy. Transposable genetic elements, epitomized by Tn5, are indispensable instruments in molecular genetics. They allow researchers to navigate the intricate landscape of genetics, exploring gene regulation, protein function, and genetic diversity with unparalleled precision. These elements continue to be at the forefront of molecular genetics research, driving innovations that deepen our understanding of the fundamental mechanisms governing life's genetic code.

Keywords: Bacteria's transposons, Tn5 transposon, transposition mechanism, transposable genetic elements

INTRODUCTION

Billions of years ago, life's incredible diversity began to take shape as organisms adapted to various ecological niches. This adaptation process, greatly facilitated by selection, equips organisms with specific mechanisms to thrive in their unique environments (Mayr, 1997). For instance, cyanobacteria, proficient at fixing nitrogen, serve as pioneer species in nutrient-poor soils (Vitousek et al., 2002), while hyperthermophiles endure scorching environments through protein thermostabilization mechanisms (Vieille and 2001). The genetic material found in all organisms propels their cellular machinery for adaptation and survival (Shapiro, 2002). Responding to evolutionary pressures and the emergence of survivors, genetic rearrangements facilitated by transposable elements become imperative. An illustrative example of this phenomenon can be seen in Burkholderia sp., where the presence of the simplest transposable element, insertion sequence, has led to antigenic variation (Parke and Gurian-Sherman, 2001; Compant et al., 2008).

The observation of transposable elements traces back to Barbara McClintock's pioneering work on the uncommon variegation phenomenon in *Zea mays* (McClintock, 1950). Subsequently, transposable elements were identified in bacteriophages (Taylor, 1963), bacteria

(Shapiro, 1969) and *Drosophila* sp. (Engels and Preston, 1981). Transposon mutagenesis techniques were then developed for genetic studies in bacteria (Singh and Klingmüller, 1986).

Transposable genetic elements

A transposable genetic element is a concise DNA sequence endowed with the capability to relocate within genomes, as documented in various studies (Berg et al., 1982; Berg et al., 1984; Reznikoff, 1993). This genetic component is widely distributed among all living organisms and phages, as substantiated by research (Kleckner, 1981; Curcio and Derbyshire, 2003; Reznikoff, 2003; Nagy and Chandler, 2004). The phenomenon through which it moves is referred to as transposition, a process that does not necessitate the presence of homologous DNA (Berg *et al.*, 1982; Berg *et al.*, 1984; Curcio and Derbyshire, 2003). The driving force behind this movement is the enzyme known as DDE transposase (Tpase), a nomenclature derived from the highly conserved amino acid triplet Asp (D), Asp and Glu (E), which play crucial roles within the enzyme's active sites (Nagy and Chandler, 2004).

Following the insertion of a transposon into a target gene, a noteworthy event occurs: the duplication of a DNA sequence surrounding the inserted transposon, typically spanning 2 to 13 bp, as evidenced by multiple studies (Shapiro, 1979; Ohtsubo and Sekine, 1996; Hu and Derbyshire, 1998). For example, IS10 transposition yields a 9-base pair duplication, while Tn7 transposition results in a 5-base pair duplication of the target sequence (Hu and Derbyshire, 1998).

Transposons, commonly recognized as agents responsible for promoting genetic diversity, possess the capability to induce substantial genome rearrangements and influence gene expression (DuBow and Bukhari, 1980; Kleckner, 1981; Reznikoff, 2003; Nagy and 2004; Schneider and Lenski, Consequently, transposition events occur at relatively low frequencies, a balance essential for the organism's evolutionary trajectory and survival (Shapiro, 2002; Reznikoff, 2003; Nagy and Chandler, 2004; Schneider and Lenski, 2004). Factors contributing to this low frequency encompass stringent regulation, inefficient transposase expression (Reznikoff, 2003) and the intricacies of the transposition process (Kleckner, 1981; Curcio and Derbyshire, 2003). Notably, transposon insertion sites are not random; instead, they exhibit "hot spots" and "cold spots" for transposon integration (Shapiro, 2002).

The study of the transposition process not only enhances our understanding of protein-DNA interactions, exemplified by the V(D)J joining system in the immune system (Curcio and Derbyshire, 2003; Reznikoff, 2003; 2008) but also serves as a valuable strategy for elucidating genetic diseases (Goryshin and Reznikoff, 1998) and understanding the virulence of pathogens (Berg et al., 1982).

Types of bacterial transposon - Insertion sequence

The insertion sequence (IS element) stands out as the smallest and most basic type of transposable genetic element found in bacterial genomes. These elements are particularly intriguing due to their streamlined structure and specialized function. Essentially, IS elements are genetic sequences that primarily encode genes essential for the process of transposition, which is the movement of the IS element within the genome.

Research conducted by Berg et al. (1982), Kleckner (1981) and Schneider and Lenski (2004) has shed light on the characteristics and prevalence of IS elements in bacterial genomes. These elements are widely distributed across various bacterial species, underscoring their significance in the realm of bacterial genetics. One remarkable feature of IS elements is their variability in size, with lengths ranging from 600 bp to 2.5 kb. This variability is highlighted in studies by Mahillon and Chandler (1998), Schaefer and Kahn (1998) and Schneider and Lenski (2004). Despite their differences, IS elements consistently contain a key gene responsible for the transposase enzyme (Tpase), which plays a central role in mediating the transposition process. Tpase is responsible for catalysing movement of the IS element within the genome.

An interesting aspect of IS element organization is the location of the promoter region that controls the transcription of the transposase gene. This promoter region is typically found within the left-hand inverted repeats of the IS element. This arrangement ensures that the transposase gene is transcribed and translated, allowing for the execution of transposition.

Furthermore, IS elements are characterized by the presence of inverted repeat sequences at both ends, spanning 10 to 40 bp. These inverted repeats serve as recognition sites for the transposase enzyme, facilitating the precise excision and insertion of the IS element into different locations within the bacterial genome. This feature contributes to the specificity and efficiency of the transposition process.

Transposase, a critical enzyme in the transposition process, plays a pivotal role in recognizing and interacting with the terminal ends of the IS element. Specifically, for the successful execution of the transposition process, transposase requires the recognition of two to three bp at the terminal end of the IS element. This recognition is not only essential for initiating the transposition process but also for enabling the breakage of DNA strands and facilitating the transfer of the IS element within the genome, as elucidated by Mahillon and Chandler (1998).

When an IS element inserts itself into a specific location within the genome, it can have a profound impact on the surrounding genetic landscape. This insertion often results in highly polar mutations, meaning that it can disrupt the normal functioning of genes in its vicinity. This disruption can have far-reaching consequences, affecting the regulation and expression of neighbouring genes. Studies conducted by Saedler *et al.* (1974) and Schneider and Lenski (2004) have shed light on the extent to which IS element insertions can influence gene expression and function.

It's noteworthy that not all IS elements behave in the same manner when it comes to transposition. Some IS elements, such as IS1 and IS5, have the ability to transpose as individual units. In contrast, certain IS elements are discovered to transpose as part of a larger composite transposon unit. A well-known example of this behaviour is observed with IS50 within the context of Tn5, where IS50 is part of a composite transposon structure. Kleckner (1981) has explored these variations in IS element transposition strategies. The role of transposase in recognizing and interacting with IS element terminal ends is crucial for the transposition process, involving DNA strand breakage and movement of the IS element. The insertion of IS elements into the genome can have significant consequences, including polar mutations and alterations in gene expression. Furthermore, the behaviour of IS elements in transposition varies, with some operating as individual units and others participating in composite transposon structures, highlighting the diversity of transpositional mechanisms in bacterial genomes.

Types of bacterial transposon – Composite and noncomposite transposon

When a DNA fragment finds itself flanked by two instances of an IS element, this configuration has the potential to move as a cohesive unit, as extensively discussed in research by Foster *et al.* (1981), Mahillon and Chandler (1998), and Schaefer and Kahn (1998). This specific structural arrangement is commonly referred to as a composite transposon, a term coined by Mahillon and Chandler (1998) to describe this phenomenon.

For instance, the transposon Tn5 serves as a prominent example of a composite transposon, where it carries genes conferring kanamycin and streptomycin resistance, all neatly bracketed by two copies of the IS element IS50 (Vizvaryova and Valkova, 2004; Reznikoff, 2008). Notably, within this composite transposon structure, the gene responsible for orchestrating the transposition process is encoded by one of the IS elements, as elucidated in studies by Foster *et al.* (1981) and Kleckner (1981).

The transposition event itself can encompass the movement of either the entire composite transposon unit or solely the individual IS element. This flexibility in transposition modes, as highlighted by Kleckner (1981), underscores the adaptability and versatility of these genetic elements in reshaping bacterial genomes.

In essence, the concept of composite transposons, wherein two IS elements flank an intervening DNA segment, is a significant phenomenon in the realm of genetic mobility. This arrangement allows for the coordinated transfer of genetic material, often carrying valuable traits or resistance genes, and contributes to the diversification of bacterial genomes through transposition events

A non-composite transposon is a type of transposon that differs from composite transposons in its structural organization. Instead of being flanked by IS elements, non-composite transposons are characterized by the presence of short terminal inverted repeats, which also serve as recognition sites for transposase enzymes, as discussed in studies by Hayes (2003) and Nagy and Chandler (2004).

Within the category of non-composite transposons, various families exist, each with its unique characteristics and functions. Notable examples of non-composite transposons include Tn3 and Tn21, as highlighted in research by Radstrom *et al.* (1994). These transposons play crucial roles in mediating the movement of genetic material within bacterial genomes.

One significant distinction between non composite transposons and other types of transposons is the mechanism through which they transpose. Unlike some transposons that rely on a cut-and-paste mechanism, most non composite transposons employ a replicative mechanism for transposition. This means that during the transposition process, a copy of the transposon is created and inserted into a new genomic location, while the original transposon remains in its original position. This mode of transposition has important implications for the

dynamics of bacterial genomes, as discussed in Schaefer and Kahn (1998).

This type of transposons represents a distinct category of transposable genetic elements characterized by their structural organization with short terminal inverted repeats. They are recognized by transposase enzymes and encompass diverse families like Tn3 and Tn21. Importantly, it primarily employs a replicative mechanism for transposition, contributing to genetic diversity and adaptability within bacterial populations.

Mechanism of transposition - Replicative transposition

Replicative transposition is a specific mechanism through which transposon DNA sequences are duplicated and then inserted into a new genomic location, while the original copy remains attached to its initial site (Kleckner, 1981). This process involves a two-step mechanism, as further elucidated (Lee *et al.*, 1983; Kans and Casadaban, 1989).

The first step of replicative transposition is initiated by the transposase protein (TnpA). During this step, a molecular structure known as a cointegrate forms between the donor DNA carrying the transposon and the target DNA. This cointegrate configuration essentially brings together the donor and target DNA segments and is followed by the duplication of the transposon itself (Lee *et al.*, 1983).

The second step of replicative transposition involves site-specific recombination, a process catalysed by the resolvase protein (TnpR). This step is responsible for resolving the donor and target DNA segments that were initially brought together in the cointegrate structure. The action of the resolvase protein serves to separate these DNA segments, thus finalizing the transposition event (Lee *et al.*, 1983).

One intriguing aspect of replicative transposition is the phenomenon known as transposition immunity. Transposition immunity refers to a situation where transposable elements are inserted into a plasmid that already contains the same type of transposable element, but at a lower frequency. This phenomenon is characterized by a reduced rate of transposition events into the plasmid (Lee et al., 1983; Darzins et al. 1988; Kans and Casadaban, 1989).

Replicative transposition is a two-step mechanism involving the transposase and resolvase proteins, leading to the duplication and insertion of transposon sequences. Transposition immunity is an intriguing consequence of this process, where transposable elements are less likely to insert into plasmids already carrying the same elements. This mechanism plays a significant role in the dynamics of transposon movement within genomes and the regulation of genetic diversity in bacterial populations.

Replicative transposition - The Tn3 family

Transposons belonging to the Tn3 family employ a replicative mechanism for their transposition (Kleckner,

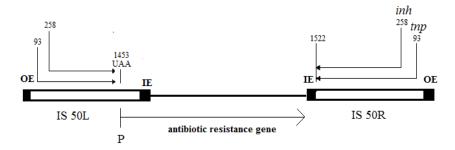


Figure 1: Schematic figure of Tn5.

1981). Among the members of this family, Tn3 serves as the prototypical and most well-studied example of this transpositional mechanism. When any transposon from the Tn3 family inserts itself into a new genomic location, a distinctive outcome ensues: the duplication of a 5-base pair segment of target DNA sequences (Kleckner, 1981).

Within the Tn3 family of transposons, there is a shared genetic architecture. These transposons harbour genes responsible for various functions, including TnpA (transposase), site-specific TnpR (resolvase) ampicillin resistance genes. These genes are situated between 38-base pair inverted repeats (Heffron et al., 1979; Hayes, 2003). Importantly, the success of transposition within the Tn3 family hinges on the arrangement of these 38-base pair inverted repeats in a cis configuration. This spatial arrangement is critical for the initiation of transposition events (Heffron et al., 1979). One of the noteworthy roles within the Tn3 transposon family is played by TnpR, the resolvase protein. TnpR serves a dual purpose in transposition. Firstly, it functions to suppress the transposition activity, acting as a regulator to maintain control over the process. Secondly, TnpR plays a crucial role in the resolution of the cointegrate structure that forms during the initial stages of transposition (Heffron et al., 1979; Kleckner, 1981; Lee et al., 1983).

Replicative transposition - Phage Mu

The Escherichia coli (E. coli) phage Mu is a versatile temperate phage capable of undergoing both lytic and lysogenic cycle (Kleckner, 1981; Ross et al., 1986). Transposition plays a pivotal role in the DNA replication of this phage. Crucially, the process of transposition within the Mu phage is governed by two Mu transposition proteins encoded by genes A and B, (Kleckner, 1981). When a susceptible host is infected by Mu phages, the Mu DNA integrates itself into the host's genome, initiating the process. At this juncture, the Mu DNA can either persist within the host genome during the lysogenic stage or become excised from the host genome during the lytic stage. In the lytic phase, the Mu DNA undergoes multiple transposition events (DuBow and Bukhari, 1980; Darzins et al., 1988).

What sets the Mu phage transposon system apart is its remarkable propensity for high-frequency transposition, with an astonishing rate of 100

transposition events occurring per cell during the lytic cycle. This remarkable feature, coupled with the random nature of insertion events, positions the Mu phage transposon system as an exceptional tool for genetic research and study. Researchers have harnessed its unique properties to investigate various genetic phenomena (Howe, 1973; DuBow and Bukhari, 1980; Ross et al., 1986; Darzins et al., 1988).

Mechanism of transposition – Conservative transposition

Conservative transposition, often referred to as the "cutand-paste" mechanism, operates in a manner where the transposon DNA is excised from its original location and then physically moves to a new site within the genome. This process of transposition has been aptly described as resembling a "cut" from one genomic location and a "paste" into another (Hayes, 2003; Reznikoff, 2008).

One notable feature of transposons undergoing conservative transposition is their ability to be relocated within the same DNA molecule as the original transposon or onto a different DNA molecule altogether. This flexibility in relocation destinations differentiates conservative transposition from transposition immunity, a phenomenon observed in replicative transposition mechanisms (Lee *et al.*, 1983; Darzins *et al.*, 1988; Kans and Casadaban, 1989).

Conservative transposition – The Tn5

Tn5 serves as a valuable model for comprehending the conservative transposition mechanism. This transposon, with a size of 5.8 kb, presents a characteristic genetic structure: a central segment comprising 2750 bp housing genes for kanamycin, bleomycin and streptomycin resistance, flanked by two IS elements, specifically IS50 (Berg et al., 1982; Mazodier et al., 1985; Goryshin and Reznikoff, 1998; Reznikoff, 2008) (Figure 1). IS50 belongs to the IS4 family and stretches over 1533 bp, featuring 9-base pair direct repeats at its extremities (Berg et al., 1982). At both ends of IS50, there are 19base pair sequences recognized by transposase during transposition events, denoted as the "inside end" (IE) when attached to the central antibiotic resistance gene and the "outside end" (OE) when distanced from the central segment (Reznikoff, 2008).

Crucially, transposition of Tn5 necessitates the involvement of a pair of OE sequences (Goryshin and Reznikoff, 1998). Remarkably, IS50 elements can transpose independently, referred to as an OE-IE event, occurring at frequencies similar to those within Tn5 (Berg et al., 1982; Berg, 1983; Goryshin and Reznikoff, 1998). Despite their genetic similarities, these two IS elements function differently (Rothstein et al., 1980; Rothstein and Reznikoff, 1981). IS50R encodes a 476-base pair tnp responsible for expressing the cis-acting transposase protein (Tpase) and the trans-acting inhibitor protein (Inh), both of which are vital components of transposition (Rothstein et al., 1980; Rothstein and Reznikoff, 1981; Berg et al., 1982; Goryshin and Reznikoff, 1998; Reznikoff, 2003; 2008). Tpase plays a pivotal role in mediating the movement of IS50 and Tn5, whereas Inh is crucial in regulating the transposition process (Reznikoff, 2008). On the other hand, IS50L contains an ochre mutant codon (UAA) proximal to IE, rendering Tpase inactive and leading to tnp gene inactivation (Goryshin and Reznikoff, 1998). This base substitution also activates the promoter of three antibiotic resistance genes located approximately 100 bp from IE of IS50L (Rothstein and Reznikoff, 1981).

The frequency of transposition events is notably influenced by the concentration of transposase in the cell (Krebs and Reznikoff, 1986). Transposition can result in the insertion of the transposon flanked by 9-base pair target gene duplications when mediated by a pair of OE sequences or an IE-OE pair (Berg *et al.*,1989; Reznikoff, 1993; Reznikoff, 2008). Inverse transposition, which involves both IE sequences, occurs less frequently, underscoring the less efficient nature of IE compared to OE (Berg *et al.*, 1982; Nag *et al.*, 1985).

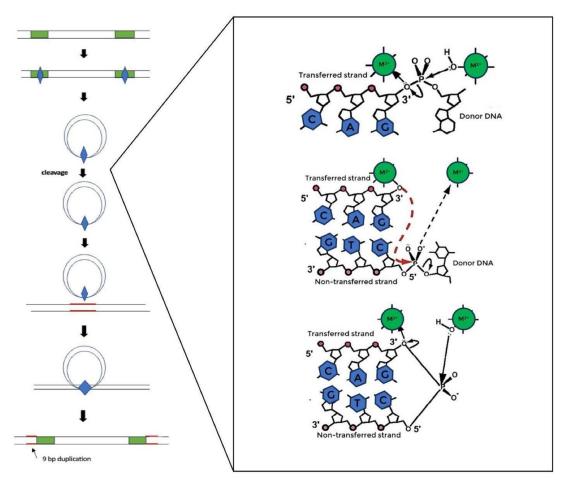
It has been observed that transposition requires supercoiled DNA, with the activity being supported by a lower frequency of transposition in rho mutants, which exhibit reduced negative supercoiling (Isberg and Syvanen, 1982; Fassler *et al.*, 1986; Datta and Rosner, 1987).

Transposition mechanism of Tn5

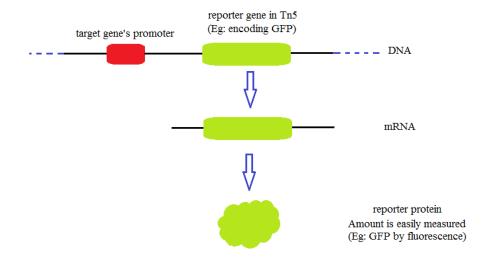
Tn5 stands out as an exceptional system for unravelling the intricacies of the transposition mechanism (Reznikoff, 2003). This process is elucidated in Figure 2. The initiation of Tn5 transposition commences with the binding of Tpase to the OE (outside end) of Tn5, resulting in the formation of a dimeric synaptic complex through the dimerization of both Tnp-end DNA (Goryshin and Reznikoff, 1998; Bhasin *et al.*, 1999; Davies *et al.*, 2000; Reznikoff, 2008).

The subsequent step involves the precise cleavage of the transposon DNA from its donor site. This cleavage event is orchestrated by Mg²⁺ ions present in the active site, particularly the DDE residues of Tpase. A sequence of events unfolds: first, a Mg²⁺ ion activates a water molecule, which transforms into a nucleophile and attacks the phosphate within the phosphodiester bond, as

illustrated in Figure 2 (Davies et al., 2000; Lovell et al., 2002; Reznikoff, 2008). This action results in the nicking of the 3' transferred-strands (TS) on both ends, generating 3'OH groups that serve as newly formed nucleophiles. Subsequently, a second Mg2+ ion activates these nucleophilic 3'OH groups, which then attack the 5' phosphate on the non-transferred strand (NTS), as depicted in Figure 2 (Bhasin et al., 1999; Lovell et al., 2002; Reznikoff, 2003). This series of reactions leads to the formation of a hairpin structure at the termini (Reznikoff, 2008). Eventually, Tpase breaks the hairpin by attacking the phosphate group that links the TS to the NTS, with the assistance of nucleophilic water molecules activated by metal ions. This results in the release of the transposon DNA from the donor site (Davies et al., 2000; Lovell et al., 2002; Reznikoff, 2003). The donor DNA may subsequently undergo degradation or be subject to repair via the blunt end repair system (Reznikoff, 2008).


The final step in the transposition process involves the Tn5-transposase complex targeting specific loci within the genome, a stage referred to as the "target capture step." While the precise details of this step remain somewhat unclear, insights can be gleaned from the structural features of the synaptic complexes observed to date. In this step, the 3'OH groups of each OE act as nucleophiles and attack the complementary sticky ends of the 9-base pair target DNA, facilitating the integration of the transposon into the new genomic location (Bhasin *et al.*, 1999; Davies *et al.*, 2000; Reznikoff, 2008). Subsequently, the strand transfer complex is removed, and the gaps left behind are filled in by the DNA polymerase of the host cells, completing the transposition process (Reznikoff, 2008).

Application of Tn5 - Transcriptional regulation


Tn5 has gained widespread popularity as a molecular genetics research tool owing to its capacity to induce a range of mutations, its straightforward experimental procedures, its extensively documented genetic composition and transposition mechanism (Reznikoff, 2003). Additionally, its adaptability, allowing for the cloning of gene fragments of varying lengths, further enhances its utility (Reznikoff, 2008).

The study of transcriptional regulation involves the use of reporter genes that lack their own promoter but come equipped with a translation initiation signal. Commonly employed reporter genes include the kanamycin (km) gene (Bellofatto et al., 1984), the gfp gene encoding the green fluorescent protein (GFP) (as depicted in Figure 3) and the lacZ gene (Kroos and Kaiser, 1984). These reporter genes are incorporated into the Tn5 transposon and subsequently introduced into the target recipient cell to investigate the mechanisms governing the transcription of specific genes. This investigative process is known as transcriptional fusion.

In transcriptional fusion, the Tn5 element carrying the reporter gene must be strategically inserted into the genes of interest, ensuring the correct orientation and

Figure 2: Schematic figure of transposition mechanism of transposon Tn5. (1) Tn5 in donor site; (2) Recognition of Tpase to end sequence; (3) Formation of binary synaptic complex; (4) Transposon-donor DNA cleavage; (5) Target capture; (6) Removal of TnP; (7) Gap repair. Figure adapted and modified from Steiniger-White *et al.* (2004).

Figure 3: Schematic figure of transcriptional regulation. When GFP in Tn5 is inserted downstream of a promoter of a particular gene, GFP will be expressed when transcription is triggered at a certain condition. This way, the regulation of a particular gene can be studied.

proximity to the terminal ends of mini-Tn5 (De Lorenzo *et al.*, 1990). This fusion event typically occurs upstream of the reporter gene within the Tn5 element.

Tn5 elements that relocate to positions downstream of a particular gene's promoter can be leveraged to examine gene transcription under varying environmental conditions. These conditions may encompass factors like temperature, dehydration, salinity, chemotaxis, symbiosis interactions and the strength of the promoter itself (Hayes, 2003).

In essence, transcriptional regulation studies involving reporter genes within the Tn5 system enable researchers to investigate how specific genes are controlled and expressed in response to different environmental cues and promoter strengths. This versatile approach facilitates a deeper understanding of the intricacies of gene regulation in diverse biological contexts.

Application of Tn5 - Translational control

To delve into translational control, researchers employ reporter genes like *lacZ* (Krebs and Reznikoff, 1988) and the *km* gene (Bellofatto *et al.*, 1984). These reporter genes do not come equipped with their own promoters or translational initiation signals, making them ideal candidates for investigating translational regulation.

The approach involves the creation of a Tn5 element containing the reporter gene, followed by its precise insertion into the gene of interest. This insertion must ensure not only the correct orientation but also the appropriate reading frame to enable the production of a functional protein (Krebs and Reznikoff, 1988). This intricate process is termed translational fusion or protein fusion.

Translational fusion allows researchers to examine how translational processes are controlled within specific genes of interest. By strategically integrating the reporter gene into the target gene, they can gain insights into the mechanisms that govern protein synthesis and its regulation in various biological contexts. This methodology serves as a powerful tool for unravelling the intricacies of translational control in molecular genetics studies.

Application of Tn5 - Protein localization and export

Tn5 can be customized to incorporate reporter genes like *lacZ* (Silhavy and Beckwith, 1985), alkaline phosphatase (*phoA*) and the *gfp* gene (Hayes, 2003). A particularly valuable approach involves creating fusion combinations of the *phoA* and *lacZ* genes within the Tn5 element. This approach allows for the simultaneous analysis of cytoplasmic and periplasmic proteins (Manoil, 1990; Hayes, 2003).

The significance of this technique lies in its ability to differentiate between proteins residing in the cytoplasm and those in the periplasm. Alkaline phosphatase, represented by phoA, becomes active when proteins are transported to the periplasm, while β -galactosidase from the lacZ gene functions exclusively with cytoplasmic

proteins or cytoplasmic segments of membrane proteins.

In the design of these Tn5 constructs, the promoter and translation initiation signals of both *phoA* and *lacZ* genes are intentionally removed. Consequently, these reporter genes can only be expressed when they are fused to a target gene that contains the appropriate promoter and translation initiation signal, ensuring the correct reading frame (Hoffman and Wright, 1985; Manoil and Beckwith, 1985; Berg *et al.*, 1989; Manoil, 1990; Hayes, 2003).

This approach allows researchers to investigate the localization and expression of specific proteins within the cell, offering insights into their cellular compartmentalization and regulatory mechanisms. By utilizing Tn5-based fusion techniques, scientists can dissect the functions and interactions of proteins in different cellular environments, enhancing our understanding of cellular processes.

Application of Tn5 - Conditional mutation

Derivatives of transposons that incorporate potent, controllable promoters can be employed to induce conditional mutations and one illustrative example is Tn.5tac1. Tn.5tac1 comprises a robust promoter, Ptac, positioned in an outward-facing orientation near the terminal end of the Tn.5 element. What distinguishes this promoter is its strict regulation by a repressor encoded by the lacI gene, which is also present within Tn.5tac1. Transcription from Ptac can be triggered by the presence of an inducer molecule, isopropyI- β -D-1-thiogalactopyranoside (IPTG).

When a transposon derivative like Tn5tac1 is inserted into the genome, it can exert a polar effect on the expression of downstream genes. Polar mutations resulting from the insertion of Tn5tac1 can be rectified by the introduction of IPTG or conversely exacerbated by its supply. The induction of IPTG may lead to two distinct outcomes: either the impairment of nearby gene expression or the excessive production of the target gene, ultimately culminating in mutant phenotypes. This phenomenon typically arises when Tn5 is inserted upstream of a specific gene.

Conversely, when Tn5 is inserted upstream of a promoter, it can disrupt the transcription of the target operon (Chow and Berg, 1988; Berg *et al.*, 1989). This approach enables researchers to precisely manipulate gene expression in response to the presence or absence of IPTG, shedding light on the regulatory mechanisms governing gene function and their impact on phenotype.

CONCLUSION

The study of transposable genetic elements, including various types found in bacteria such as insertion sequences, composite, and non-composite transposons, is crucial for understanding the dynamic nature of genetic material. These elements have played a pivotal role in shaping bacterial genomes by enabling the movement of genetic information within and between organisms.

Examining the mechanisms of transposition, such as replicative and conservative transposition, provides insights into the intricate processes involved in genetic rearrangements. The Tn3 family and phage Mu serve as prime examples of replicative transposition, showcasing the versatility of these mechanisms. However, it is the transposon Tn5 that takes the spotlight as a powerful tool in molecular genetics research. Its transposition mechanism has been harnessed to precisely control gene expression, explore translational regulation, investigate protein localization and induce conditional mutations. Tn5's adaptability and controllability have made it an indispensable asset in deciphering the complexities of gene regulation, protein function and genetic diversity. The comprehensive exploration of transposons and their applications, particularly exemplified by Tn5, underscores their pivotal role in advancing our understanding of genetics. These mobile genetic elements continue to be fundamental tools in molecular genetics research, enabling us to dissect the intricate workings of genes and their regulatory mechanisms.

REFERENCES

- Bellofatto, V., Shapiro, L. and Hodgson, D. A. (1984). Generation of a Tn5 promoter probe and its use in the study of gene expression in *Caulobacter crescentus*. *Proceedings of the National Academy of Sciences* 81(4), 1035-1039.
- Berg, D., Johnsrud, L., McDivitt, L., Ramabhadran, R. and Hirschel, B. (1982). Inverted repeats of Tn5 are transposable elements. *Proceedings of the National Academy of Sciences* 79(8), 2632-2635.
- Berg, D. E. (1983). Structural requirement for IS50-mediated gene transposition. *Proceedings of the National Academy of Sciences* 80(3), 792-796.
- Berg, D. E., Berg, C. M. and Sasakawa, C. (1984). Bacterial transposon Tn5: Evolutionary inferences. *Molecular Biology and Evolution* 1(5), 411-422.
- Berg, D. E., Howe, M. M. and Ajioka, J. W. (1989).
 Mobile DNA (volume 2). American Society for Microbiology, Washington, DC.
- Bhasin, A., Goryshin, I. Y. and Reznikoff, W. S. (1999). Hairpin formation in Tn5 transposition. *Journal of Biological Chemistry* 274(52), 37021-37029.
- Chow, W. Y. and Berg, D. E. (1988). Tn5tac1, a derivative of transposon Tn5 that generates conditional mutations. *Proceedings of the National Academy of Sciences* 85(17), 6468-6472.
- Compant, S., Nowak, J., Coenye, T., Clément, C. and Ait Barka, E. (2008). Diversity and occurrence of Burkholderia spp. in the natural environment. FEMS Microbiology Reviews 32(4), 607-626.
- Curcio, M. J. and Derbyshire, K. M. (2003). The outs and ins of transposition: From mu to kangaroo. *Nature Reviews Molecular Cell Biology* **4(11)**, **865-877**.
- Darzins, A., Kent, N. E., Buckwalter, M. S. and Casadaban, M. J. (1988). Bacteriophage Mu sites required for transposition immunity. *Proceedings of* the National Academy of Sciences 85(18), 6826-6830.

- Datta, A. and Rosner, J. (1987). Reduced transposition in rho mutants of *Escherichia coli* K-12. *Journal of Bacteriology* 169(2), 888-890.
- Davies, D. R., Goryshin, I. Y., Reznikoff, W. S. and Rayment, I. (2000). Three-dimensional structure of the Tn5 synaptic complex transposition intermediate. Science 289(5476), 77-85.
- De Lorenzo, V., Herrero, M., Jakubzik, U. and Timmis, K. N. (1990). Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in Gramnegative eubacteria. *Journal of Bacteriology* 172(11), 6568-6572.
- **DuBow, M. and Bukhari, A. (1980).** Effects of prophage Mu induction on expression of adjacent host genes. *Molecular Biology Reports* **6(4), 229-234.**
- Engels, W. R. and Preston, C. R. (1981). Identifying P factors in *Drosophila* by means of chromosome breakage hotspots. *Cell* 26(3), 421-428.
- Fassler, J. S., Arnold, G. F. and Tessman, I. (1986). Reduced superhelicity of plasmid DNA produced by the rho-15 mutation in *Escherichia coli*. *Molecular and General Genetics* 204(3), 424-429.
- Foster, T. J., Davis, M. A., Roberts, D. E., Takeshita, K. and Kleckner, N. (1981). Genetic organization of transposon Tn10. *Cell* 23(1), 201-213.
- Goryshin, I. Y. and Reznikoff, W. S. (1998). Tn5 in vitro transposition. *Journal of Biological Chemistry* 273(13), 7367-7374.
- **Hayes**, **F.** (2003). Transposon-based strategies for microbial functional genomics and proteomics. *Annual Review of Genetics* 37(1), 3-29.
- Heffron, F., McCarthy, B. J., Ohtsubo, H. and Ohtsubo, E. (1979). DNA sequence analysis of the transposon Tn3: Three genes and three sites involved in transposition of Tn3. *Cell* 18(4), 1153-1163.
- Hoffman, C. S. and Wright, A. (1985). Fusions of secreted proteins to alkaline phosphatase: An approach for studying protein secretion. *Proceedings of the National Academy of Sciences* 82, 5107-5111.
- Howe, M. M. (1973). Prophage deletion mapping of bacteriophage Mu-1. *Virology* 54(1), 93-101.
- Hu, W. Y. and Derbyshire, K. M. (1998). Target choice and orientation preference of the insertion sequence IS903. *Journal of Bacteriology* **180(12)**, **3039-3048**.
- **Isberg, R. R. and Syvanen, M. (1982).** DNA gyrase is a host factor required for transposition of Tn5. *Cell* **30(1), 9-18.**
- Kans, J. and Casadaban, M. (1989). Nucleotide sequences required for Tn3 transposition immunity. *Journal of Bacteriology* 171(4), 1904-1914.
- **Kleckner**, **N.** (1981). Transposable elements in prokaryotes. *Annual Review of Genetics* 15, 341-404.
- Krebs, M. P. and Reznikoff, W. S. (1986). Transcriptional and translational initiation sites of IS50: Control of transposase and inhibitor expression. *Journal of Molecular Biology* 192(4), 781-791.
- **Krebs, M. P. and Reznikoff, W. S. (1988).** Use of a Tn5 derivative that creates lacZ translational fusions to obtain a transposition mutant. *Gene* **63(2), 277-285.**

- Kroos, L. and Kaiser, D. (1984). Construction of Tn5 lac, a transposon that fuses lacZ expression to exogenous promoters, and its introduction into *Myxococcus* xanthus. Proceedings of the National Academy of Sciences 81(18), 5816-5820.
- Lee, C. H., Bhagwat, A. and Heffron, F. (1983). Identification of a transposon Tn3 sequence required for transposition immunity. *Proceedings of the National Academy of Sciences* 80(22), 6765-6769.
- Lovell, S., Goryshin, I. Y., Reznikoff, W. R. and Rayment, I. (2002). Two-metal active site binding of a Tn5 transposase synaptic complex. *Nature Structural and Molecular Biology* 9(4), 278-281.
- Mahillon, J. and Chandler, M. (1998). Insertion sequences. *Microbiology and Molecular Biology Reviews* 62(3), 725-774.
- **Manoil, C. (1990).** Analysis of protein localization by use of gene fusions with complementary properties. *Journal of Bacteriology* **172(2), 1035-1042.**
- Manoil, C. and Beckwith, J. (1985). TnphoA: A transposon probe for protein export signals. Proceedings of the National Academy of Sciences 82(23), 8129-8133.
- Mayr, E. (1997). Evolution and the Diversity of Life: Selected Essays. Harvard University Press, United States.
- Mazodier, P., Cossart, P., Giraud, E. and Gasser, F. (1985). Completion of the nucleotide sequence of the central region of Tn5 confirms the presence of three resistance genes. *Nucleic Acids Research* 13(1), 195-205
- McClintock, B. (1950). The origin and behavior of mutable loci in maize. Proceedings of the National Academy of Sciences 36(6), 344-355.
- Nag, D. K., DasGupta, U., Adelt, G. and Berg, D. E. (1985). IS50-mediated inverse transposition: Specificity and precision. *Gene* 34(1), 17-26.
- Nagy, Z. and Chandler, M. (2004). Regulation of transposition in bacteria. Research in Microbiology 155(5), 387-398.
- Ohtsubo, E. and Sekine, Y. (1996). Bacterial insertion sequences. Current Topics in Microbiology and Immunology 204, 1-26.
- Parke, J. L. and Gurian-Sherman, D. (2001). Diversity of the *Burkholderia cepacia* complex and implications for risk assessment of biological control strains. *Annual Review of Phytopathology* 39(1), 225-258.
- Radstrom, P., Skold, O., Swedberg, G., Flensburg, J., Roy, P. H. and Sundström, L. (1994). Transposon Tn5090 of plasmid R751, which carries an integron, is related to Tn7, Mu, and the retroelements. *Journal of Bacteriology* 176(11), 3257-3268.
- Reznikoff, W. (1993). The Tn5 transposon. Annual Reviews in Microbiology 47(1), 945-964.
- Reznikoff, W. S. (2003). Th5 as a model for understanding DNA transposition. *Molecular Microbiology* 47(5), 1199-1206.
- Reznikoff, W. S. (2008). Transposon Tn5. Annual Review of Genetics 42, 269-286.

- Ross, W., Shore, S. and Howe, M. (1986). Mutants of Escherichia coli defective for replicative transposition of bacteriophage Mu. Journal of Bacteriology 167(3), 905-919.
- Rothstein, S. J. and Reznikoff, W. S. (1981). The functional differences in the inverted repeats of Tn5 are caused by a single base pair nonhomology. *Cell* 23(1), 191-199.
- Rothstein, S. J., Jorgensen, R. A., Postle, K. and Reznikoff, W. S. (1980). The inverted repeats of Tn5 are functionally different. *Cell* 19(3), 795-805.
- Saedler, H., Reif, H., Hu, S. and Davidson, N. (1974). IS2, a genetic element for turn-off and turn-on of gene activity in *E. coli. Molecular and General Genetics* 132(4), 265-289.
- Schaefer, M. R. and Kahn, K. (1998). Cyanobacterial transposons Tn5469 and Tn5541 represent a novel noncomposite transposon family. *Journal of Bacteriology* 180(22), 6059-6063.
- Schneider, D. and Lenski, R. E. (2004). Dynamics of insertion sequence elements during experimental evolution of bacteria. Research in Microbiology 155(5), 319-327.
- Shapiro, J. (1969). Mutations caused by the insertion of genetic material into the galactose operon of Escherichia coli. Journal of Molecular Biology 40(1), 93-105.
- **Shapiro**, **J. A.** (1979). Molecular model for the transposition and replication of bacteriophage Mu and other transposable elements. *Proceedings of the National Academy of Sciences* 76(4), 1933-1937.
- Shapiro, J. A. (2002). A 21st century view of evolution. Journal of Biological Physics 28(4), 745-764.
- Silhavy, T. J. and Beckwith, J. R. (1985). Uses of lac fusions for the study of biological problems. *Microbiological Reviews* 49(4), 398.
- Singh, M. and Klingmüller, W. (1986). Transposon mutagenesis in *Azospirillum brasilense*: Isolation of auxotrophic and Nif- mutants and molecular cloning of the mutagenized nifDNA. *Molecular and General Genetics* 202(1), 136-142.
- Steiniger-White, M., Rayment, I. and Reznikoff, W. S. (2004). Structure/function insights into Tn5 transposition. Current Opinion in Structural Biology 14(1) 50-57.
- Taylor, A. L. (1963). Bacteriophage-induced mutation in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America 50(6), 1043.
- Vieille, C. and Zeikus, G. J. (2001). Hyperthermophilic enzymes: Sources, uses, and molecular mechanisms for thermostability. *Microbiology and Molecular Biology Reviews* 65(1), 1-43.
- Vitousek, P. M., Cassman, K., Cleveland, C., Crews, T., Field, C. B., Grimm, N.B., et al. (2002). Towards an ecological understanding of biological nitrogen fixation. *Biogeochemistry* 57(1), 1-45.
- Vizvaryova, M. and Valkova, D. (2004). Transposo— The useful genetic tools. *Biologia-Bratislava* 59(3), 309-318.