

Malaysian Journal of Microbiology

Published by Malaysian Society for Microbiology (InSCOPUS since 2011)

Evaluation of antibiotic resistance of Enterobacteriaceae isolated from edible snails

Cajethan Onyebuchi Ezeamagu*, Victory Oribim Harry, Emina Ama and Joy Ndidiamaka Barns

Department of Microbiology, Babcock University, Ilishan, Ogun State, Nigeria. Email: <u>onyezecajeth@yahoo.com</u>

Received 1 July 2020; Received in revised form 2 September 2020; Accepted 24 December 2020

ABSTRACT

Aims: Food safety and drug resistance in bacteria are both important issues globally. Consumption of escargot represents possible food safety problem especially when contaminated with an indicator and multi-drug resistant bacteria. Hence, this study aimed to identify and evaluate susceptibility of Enterobacteriaceae isolated from edible snails *Archachatina marginata* to antibiotics.

Methodology and results: A total of 60 edible snails, *A. marginata* were purchased from local markets in three states of Nigeria. The edible snails were starved for three days and Enterobacteriaceae were isolated using microbiological procedures. Bacteria was identified by sequencing its partial 16S rRNA, while susceptibility of the bacteria to antibiotic was determined by disc diffusion method. Enterobacteriaceae obtained were *Klebsiella* (18), *Escherichia* (16), *Citrobacter* (10), *Salmonella* (7) and *Enterobacter* (5) species. Out of the 56 isolates obtained, 21 (37.5%) were resistant to amoxicillin and amoxicillin/clavulanic acid, 9 (16.07%) were resistant to tetracycline and 4 (7.14%) were resistant to co-trimoxazole.

Conclusion, significance and impact of study: The number of isolates which show resistant to different antibiotic classes was small. However, coliform bacteria (*Escherichia coli, Klebsiella pneumoniae, Citrobacter freundii*, and *Enterobacter cloacae*) isolated from edible snails represent a huge food safety risk to the consumers of edible snails. Hence, high hygienic practices are required for the consumers of edible snails to prevent infection with pathogenic bacteria.

Keywords: Edible snail, enterobacteriaceae, susceptibility

INTRODUCTION

The Enterobacteriaceae are the largest family among Gram-negative bacteria and are commonly found in the gastrointestinal tract of human and animals as commensals playing both positive and negative roles in the host (Linton and Hinton, 1988; Lauzon et al., 2003; Machado et al., 2013). They have been the most cause associated to healthcare and community infections globally especially in drug resistance (Pitout and Laupland, 2008). Members such as Salmonella, Escherichia, Klebsiella, Shigella, and Yersinia have been involved in food poisoning, diarrhea, pneumonia and other forms of extra-intestinal diseases (Kapperud, 1991; Rangel et al., 2005; Choi et al., 2008; Kunwar et al., 2013; Painter et al., 2013; Sangeetha et al., 2014; Ed-Dra et al., 2017). The presence of this family, mainly coliforms, indicates evidence of faecal contamination either from human or animal sources and this plays a significant role in decision making within an industrial and pharmaceutical

settings where food safety standards are upheld (Tortorello, 2003).

Microbial drug resistance is currently the most important world focus as a result of its increased impact in both community and healthcare institutions. The impacts include prolonged hospitalization, recurrent infections, economic burdens, and most importantly increased mortality rate (Kong et al., 2016; Munita and Arius, 2016; Ezeamagu et al., 2018). The dynamics of bacterial drug resistance pose serious challenges on patients' management and chemotherapy, which often result in treatment failure. Bacterial drug resistance is no longer new and dated back in 19th century before the first generation beta-lactam antibiotics were introduced in clinical practice (Fevre et al., 2005; Saga and Yamaguchi, 2009). To date, the trend of bacterial resistance has been on the increase as more antibiotics are being introduced in clinical practice (WHO, 2014; Ezeamagu et al., 2018). There is a strong relationship between drug resistance and antibiotic use as several reports have linked these

two components (Tumbarello *et al.*, 2006; Wener *et al.*, 2010; Fair and Tor, 2014; Harris, 2015).

Several mechanisms that allow bacterial survive from antibiotic treatment leading to resistance such as efflux pump, bypass of metabolic pathways inhibited by the antibiotics, modification of target site, and more importantly destruction of the antibiotics by microbial enzymes have been identified (Munita and Arias, 2016). Extended-spectrum beta-lactamases (ESBLs) are the enzymes that are extensively used by Gram-negative bacteria, especially the Enterobacteriaceae and caused resistance to most of antibiotics class from carbapenems (Coque et al., 2008; Pitout and Laupland, 2008; Abdelhady et al., 2016). Temoneira (TEM), sulfidrhylvariable (SHV) and cefotaximase (CTX-M) genes usually reside on mobile genetic elements (plasmids), which migrate from strain to strain and between other bacterial species. Over 150 ESBLs have been reported worldwide; nevertheless, class A beta-lactamases are most extensively studied (Rupp and Fey, 2003).

Snail meat, also referred to as escargot, provides protein dietary need in various parts of the world especially in low income earners like Ghana (Ngenwi et al., 2010). The common edible species are Helix pomatia, Helix aspersa, Archachatina marginata (African giant snail) and Achatina fulica. The nutritional value of edible snail with respect to protein (15%), iron (3.5 mg/100 g) and low fat contents between 1.3-2.4%, essential fatty (linoleic acids and linolenic) acids has been documented (Saldanha et al., 2001; Su et al., 2004; Adegoke et al., 2010). There were reports that protein contents in edible snails was comparable to domestic livestock (Imevbore and Ademosun, 1988; Adegoke et al., 2010). The U.S. has imported snails for worth more than \$4.5 million from 24 countries (Adenegan and Bolaji-Olutunji, 2012). Hence, it is economically viable for wealth generation. Since the nutritional and economic values of snail is a welcome development, especially in Africa, where the per capita animal protein consumption lies within the range of 6.8-21.8 g per capita per day (Egbunike, 1997; Jummai and Okoli, 2013; Radzki et al., 2017), however, transmission of infectious diseases from the consumption of edible snails has been reported (Morgan et al., 2002; Kirkan et al., 2006). Pathogens of public health importance have been isolated from edible snails such as Staphylococcus, Bacillus, Aspergillus, Micrococcus species (Adegoke et al., 2010; Van Horn et al., 2012).

Data in the literature suggest that there is a significant geographical variation in the prevalence of ESBL-producing Enterobacteriaceae globally (CDC, 2013; WHO, 2014; Harris, 2015) and transmission of infectious diseases has been reported amongst people who consumed snail meat (Morgan et al., 2002; Kirkan et al., 2006). Thus, it is imperative to identify important reservoirs of ESBL-producing Enterobacteriaceae, of which African giant edible snail (A. marginata) was considered in this current study. Hence, the objective of this study was to identify Enterobacteriaceae, assess its resistance determinants (ESBL and plasmid) and determine their susceptibility to different antibiotic classes.

MATERIALS AND METHODS

Sources and isolation procedures

A total of 60 A. marginata (20 samples each) were purchased from local markets in three states (Lagos, Ogun and River) between February and June, 2016. They were all kept in air proof bags and immediately sent to the laboratory, Babcock University processing. The edible snails were starved for three days and washed with 70% ethanol prior to bacterial isolation from the edible snails. The snails were aseptically cut open and intestinal contents were transferred into tryptone soy broth (Oxoid, UK) and incubated overnight at 37 °C for 24 h. MacConkey, Salmonella-Shigella and eosinmethylene blue agars (Oxoid, UK) were used to selectively isolate members of Enterobacteriaceae. Besides, Gram staining was also performed according to microbiological standard procedures. A total of 56 nonduplicate isolates were selected for further screening.

Molecular Identification

Based on the preliminary tests, 22 isolates were selected for species barcoding. Genomic DNA was extracted according to the protocol described in Quick-DNATM miniprep plus kit (Zymo research, Biolab, USA). The quality of DNA was verified by 1.5% agarose gel electrophoresis prior to PCR amplification. The hypervariable region of 16S rRNA of bacteria were using PCR with amplified primers 27F, 5'-AGAGTTTGATCMTGGCTCAG-3' and 1525R, 5'-AAGGAGGTGWTCCARCCGCA-3' synthesized bv Inquaba Biotech, South Africa. An aliquot of 5.0 µg of extracted DNA was added to PCR mix containing 25 µL OneTaq Quick-Load 2X Master Mix Buffer (New England BioLabs), 0.2 mM forward and reverse primers and sterile distilled water to make up to 50 µL reaction volume. PCR was carried out with positive and negative control containing Escherichia coli (ATCC 25922) and all of the reagents without DNA template respectively. DNA amplification was carried out using GeneAmp PCR 9700 system (Applied Biosystems) with the following thermal programme set up: Initial denaturation at 94 °C for 3 min, denaturation at 94 °C for 30 sec, annealing at 47 °C for 30 sec, extension at 68 °C for 30 sec and final extension at 68 °C for 5 min for 30 cycles. After that, 10 µL of amplicon was resolved by 1.5% agarose gel electrophoresis.

The amplicons were then purified and sequenced using Sanger sequencing method by Inquaba Biotech, South Africa on commercial basis. Unidirectional sequence reads were performed by standard procedures and the contigs were assembled using BioEdit (version 7.2.5.0) sequence program (Hall et al., 1999). The evolutionary history was inferred using the Neighbor-Joining method (Saitou and Nei, 1987). The evolutionary distances were computed using the Jukes-Cantor method (Jukes and Cantor, 1969) and are in the units of the number of base substitutions per site. All positions containing gaps and missing data were eliminated.

Evolutionary analyses were conducted in MEGA6 (Tamura *et al.*, 2013). All the sequences were deposited in GenBank under accession numbers: MH843162 to MH843183.

Extended β-lactamase detection

BrillianceTM ESBL chromogenic agar plate (Oxoid, UK) was employed for detection of extended beta-lactamases. An overnight culture of the test organisms was prepared and standardized to 0.5 McFarland turbidity standard. Then, the ESBL chromogenic agar plates were inoculated with the respective test organisms and incubated at 37 °C for 24 h. The result was interpreted following the guidelines provided by the manufacturer.

Susceptibility test

Susceptibility test was carried out using commercial multi antibiotic disc manufactured by Abtek Biologicals Ltd (Abtek®): Amoxicillin (10 μg), cotrimoxazole (10 μg), gentamicin (10 ofloxacin μg), μg), amoxicillin/clavulanate (10 µg), tetracycline (30 µg), nalidixic acid (10 µg) and nitrofurantoin (10 µg). Briefly, a single colony of pure isolate was inoculated into a test tube containing 1 mL of nutrient broth (Oxoid, UK) and incubated overnight at 37 °C. The overnight broth was then standardized to match 0.5 McFarland standard. A sterile swab stick was dipped in the standardized suspension and streaked over the surface of prepared Mueller Hilton agar plates (Oxoid LTD, Basingstoke, Hamshire, England). The antibiotic were placed on the agar surface maintaining a distance of 30 mm edge to edge. The plates were incubated at 37 °C for 24 h and the clear zone of inhibition was measured with a ruler to the nearest diameter. Results were interpreted in accordance with Clinical and Laboratory Standards Institute guidelines (CLSI, 2015).

Plasmid extraction

Plasmid extraction was achieved using ZR Plasmid Miniprep Kit (Zymo Research, USA) following the protocol provided by the manufacturer. Briefly, 1 mL of an overnight culture of the bacterial cells was transferred into 1.5 mL Eppendorf tubes and centrifuged at full speed (12,000 r.p.m) in a mini-centrifuge (Eppendorf, Germany) for 15-20 sec. The supernatant was then discarded and P1 buffer (200 µL) was added to re-suspend the pellet by vortexing. Thereafter, 200 µL of P2 buffer was mixed by inverting 2-4 times. After 1 min, 400 µL of P3 buffer was added and the mixture was then mixed gently. The lysate was allowed to incubate at room temperature for 1-2 min and was centrifuged for an additional 2 min. The supernatant was then transferred to a Zymo-Spin IN Column placed in a collection tube. The Zymo-Spin IN Collection tube assembly was then centrifuged for 30 sec and the flow-through was discarded. Exactly 200 µL of Endo-Wash buffer and 400 µL of Plasmid-Wash buffer was successively added to the column ensuring centrifugation for 30 sec and 1 min respectively. The column was transferred to a clean 1.5 mL Eppendorf tube where 30 μ L of DNA Elution buffer was then added to the column and centrifuged for 30 sec to elute the plasmid DNA. Electrophoresis was carried out using 0.8% agarose and stained with ethidium bromide 0.5 g/mL for 45 min to observe the plasmid.

RESULTS AND DISCUSSION

Species distribution

A total of 56 non-duplicate isolates of Enterobacteriaceae were obtained from 16 (28.57%), 19 (33.93%) and 21 (37.50%) in Lagos, Rivers and Ogun State respectively (Table 1). Five members of Enterobacteriaceae family were obtained: *Escherichia, Klebsiella, Citrobacter, Enterobacter* and *Salmonella* species; and 4 non-Enterobacteriaceae consisting of *Ralstonia* spp. (2), *Acinetobacter* spp. (1) and *Massilia* spp. (1) (Table 2).

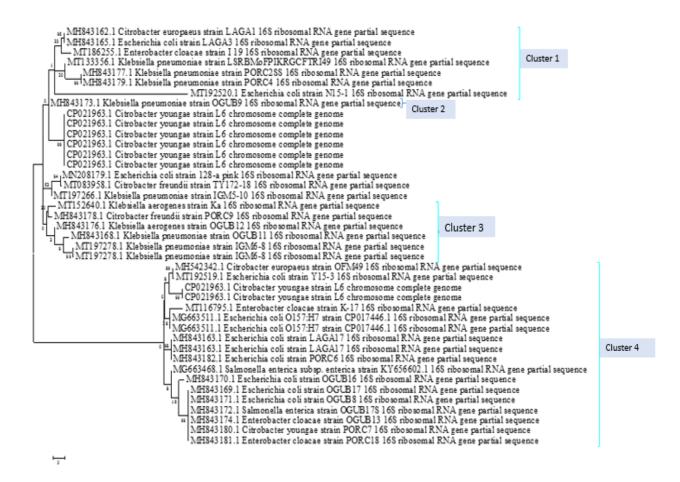
In Table 2, the least percentage similarity of species within the family of Enterobacteriaceae to the close relatives in Genbank was 93%, indicating similar species. A review by Janda and Abbott in 2007 suggest that 16S rRNA gene sequencing provides genus identification in most cases (>90%), but less so with regard to species (65 to 83%). A more stringent boundary for species delineation was proposed to increase the accuracy of identification (Stackebrandt and Ebers, 2006). Pairwise nucleotide similarity values for the species in this study were within the acceptable range for species identification. Hence, sequencing using 16S rRNA accurately identified the bacteria under investigation. The use of 16S rRNA over other house-keeping genes in bacterial identification is probably due to its conserved nature in virtually all bacteria and hence, a more accurate measure of evolution.

Table 1: Distribution of Enterobacteriaceae isolated from edible snails across the three states.

	Sample location			
Bacteria isolated	Lagos	Rivers	Ogun	
	state	state	state	
Citrobacter spp.	4	2	4	
Enterobacter	1	3	1	
spp.				
E. coli	6	4	6	
Klebsiella spp.	3	7	8	
Salmonella spp.	2	3	2	
Total	16	19	21	
TOTAL	(28.57%)	(33.93%)	(37.50%)	

The phylogenetic relationship of the five species fell into four clusters (Figure 1). Isolates obtained from Rivers State (*Klebsiella pneumoniae* PORC2SS, PORC4, *C. freundii* PORC9, *Enterobacter cloacae* PORC18 and *Citrobacter youngae* PORC7) were distributed within three clusters. The same trend was observed in isolates isolated from Ogun State. Four

Table 2: The bacteria identification, accession number and its close relatives in NCBI.


Isolates	Accession number	Location	Similarity to close relatives in NCBI (%)	Close relatives in NCBI	
Klebsiella pneumoniae	MH843168	Ogun	98	Klebsiella pneumoniae strain IGM6-8	
Escherichia coli strain	MH843169	Ogun	96	Escherichia coli strain 128-a pink	
Escherichia coli O157:H7	MH843170	Ogun	99	Escherichia coli O157:H7 strain	
Escherichia coli strain	MH843171	Ogun	93	Escherichia coli strain N15-1	
Salmonella enterica subsp. enterica strain	MH843172	Ogun	97	Salmonella enterica subsp. enterica strain KY656602.1	
Klebsiella pneumoniae strain	MH843173	Ogun	99	Klebsiella pneumoniae strain LSRBMoFPIKRGCFTRI49	
Enterobacter cloacae strain	MH843174	Ogun	99	Enterobacter cloacae strain I 19	
Klebsiella aerogenes strain	MH843176	Ogun	99	Klebsiella aerogenes strain Ka	
Klebsiella pneumoniae strain	MH843177	Rivers state	98	Klebsiella pneumoniae strain IGM5-10	
Citrobacter freundii strain	MH843178	Rivers state	99	Citrobacter freundii strain TY172- 18	
Klebsiella pneumoniae strain	MH843179	Rivers state	98	Klebsiella pneumoniae strain IGM6-8	
Citrobacter youngae strain	MH843180	Rivers state	94	Citrobacter youngae strain L6	
Enterobacter cloacae strain	MH843181	Rivers state	96	Enterobacter cloacae strain K-17	
Escherichia coli O157:H7 strain	MH843182	Rivers state	96	Escherichia coli O157:H7 strain	
Citrobacter europaeus	MH843162	Lagos	98	Citrobacter europaeus strain OFM49	
Escherichia coli O157:H7 strain	MH843163	Lagos	99	Escherichia coli O157:H7 strain	
Escherichia albetii strain	MH843164	Lagos	99	Escherichia coli strain N15-1	
Escherichia coli strain	MH843165	Lagos	99	Escherichia coli strain Y15-3	
Ralstonia pickettii strain*	MH843166	Lagos	99	Ralstonia pickettii strain P2W4	
Ralstonia pickettii strain*	MH843167	Ogun	99	Ralstonia pickettii strain P2W4	
Massilia sp. strain*	MH843183	Rivers state	91	Massilia arvi strain 14.1	
Acinetobacter baumannii strain*	MH843175	Ogun	88	Acinetobacter baumannii strain AUBAB06	

^{*,} Non-enterobacteriaceae.

strains obtained from Ilishan in Ogun State: E. coli (OGUB17 and OGUB8), Salmonella enterica (OGUB17S) and E. cloacae (OGUB13) were 99% identical to two strains (E. cloacae PORC18 and C. youngae PORC7) found in Rivers State. However, they were evolutionally distinct from E. coli LAGA17 and E. coli PORC6 strains isolated from Lagos and Rivers State respectively. The phylogenetic relationship indicated that the species obtained from Ogun state were more closely related to each other compared to species in other states. It is intriguing to note that the strains obtained from close proximity areas (Lagos and Ogun state) of 76.6 km apart were evolutionally distant, whereas relatedness was observed in the strains in two distant locations (Lagos-Port Harcourt, 478 km and Ogun-Port Harcourt, 465 km). It seems therefore, that evolutionary relationship is a function of distance. However, more studies with large

population are required to unravel this puzzle. In addition, analysing a set of conserved genes among the isolates will shed light on the evolutionary and functional relationships which is beyond the scope of this study. Nevertheless, the phylogenetic analysis revealed a transmission pattern between two different States (Ogun-Port Harcourt and Lagos-Port Harcourt routes) and vice versa. As snail meat provides protein dietary need for people, especially in low income earners, there is a likely possibility of inter-state trade occurring across the two routes above. Lagos and Port Harcourt are the two leading cities in terms of commerce and therefore may be the nerve centres for snail business in Nigeria.

The transmission pattern is important in disease surveillance and epidemiology especially as it concerns the general public about the recovery of Enterobacteriaceae within the intestinal tract of snails.

Figure 1: Phylogenetic tree illustrating the relationship among the Enterobacteriaceae identified and their close relatives in NCBI. The evolutionary history was inferred using the Neighbor-Joining method and distances were computed using the Jukes-Cantor method. Cluster 1: *C. youngae* strain LAGA1, *E. coli* strain LAGA3, *K. pneumoniae* strain PORC2SS and *K. pneumoniae* strain PORC4; Cluster 2: *K. pneumoniae* strain OGUB9; Cluster 3: *C. freundii* strain PORC9, *K. aerogenes* strain OGUB12 and *K. pneumoniae* strain OGUB11; Cluster 4: *E. coli* strain LAGA17, *E. coli* strain PORC6, *E. coli* strain OGUB16, *E. coli* strain OGUB17, *E. coli* strain OGUB13, *C. youngae* strain PORC7 and *E. cloacae* strain PORC18.

159

Consequently, snails serve as reservoirs for pathogenic bacteria, which could constitute health hazard to humans. The bacteria reported in this work were comparable to species obtained by other authors (Agbonlahor et al., 1994; Charrier et al., 2006; Adegoke et al., 2010; Nwiyi and Amaechi, 2011; Chukwudi and John, 2013). Of particular interest was the isolation of coliforms (Escherichia, Citrobacter, Enterobacter and Klebsiella species) which serve as indicator (evidence of faecal contamination) in water, food and pharmaceutical industries. The presence of these pathogenic organisms represents a significant health risk for humans who consuming snail meat. For instance, E. coli O157:H7 is the cause of many health issues in both humans and animals. Although most infections of E. coli O157:H7 in humans have been traced to exposure to transmission routes such as food or water, person-to-person and direct contact with animals or animal manure (Swerdlow et al.,

1992; Kiranmayi et al., 2010). However, the isolation of this bacterium in this study is an important food safety issue that need serious public attention. This is because the consumption of contaminated food especially meat dishes have been linked to illness (Wells et al., 1991). Human infection caused by E. coli O157:H7 can cause various clinical manifestations ranging from asymptomatic cases to death. This strain infects the alimentary tract and induces abdominal cramps with hemorrhagic diarrhea and enterohemorrhagic disease that can cause systemic illness by hemolytic uremic syndrome (HUS), which manifests as hemolytic anemia, thrombocytopenia, and acute renal failure. Hence, it is an important food pathogen that causes diarrhea, hemorrhagic colitis, and HUS in humans (Armstrong et al., 1996). It has been reported that HUS can develop in both acute, potentially life-threatening illness and lifelong, chronic illness (Pollari et al., 2017; Atnafie et al., 2017; Erickson et al., 2019).

Isolation of S. enterica subsp. enterica strains in this study is a warning signal that consumption of snail meat or products could be an avenue for infection to humans. Serrano et al. (2004) conducted a microbiological quality of terrestrial gastropods prepared for human consumption and observed that Salmonella contaminated the cooked products. Previous investigations in the analysis of uncooked snails have demonstrated that Salmonella is a frequent contaminant and has been isolated in Nigeria and Morocco (Andrews and Wilson, 1975; Obi and Nzeako, 1980). Non-typhoidal Salmonellae is responsible for gastroenteritis and usually characterized by fever, vomiting and severe diarrhea. A yearly estimate of over a million of Salmonella infections were reported in United States with 19,000 hospitalizations and about 400 deaths (Scallan et al., 2011; Bell et al., 2016). Salmonellosis is usually linked to consumption of contaminated foods including other food varieties and are usually dose dependent (Painter et al., 2013; Bell et al., 2016).

Food contamination with antibiotic-resistant bacteria is of serious threat to public health and the antibiotic determinants can easily be transferred to medically important bacteria through any repertoires of transfer mechanisms. The first genomic island of Salmonella which contain antibiotic resistant cluster was reported in S. enterica serovar Typhimurium DT104 (Van et al., 2007). This genomic island has been reported to be transferable between S. enterica and E. coli (Doublet et al., 2005). In developing countries where raw food hygiene is frequently poor and antimicrobial resistance epidemiology is at its developmental stage, the impact of Salmonella contamination and infections may be costly especially in children and immune-compromised patients. Snails naturally have high population of indigenous bacteria including coliforms as well as other poisonous substances (ICMSF, 2005). The meat can easily be contaminated by pathogens and serve as vehicle of transmission to consumers. According to Adagbada et al. (2011), there is a close association between snails and microorganisms due to their sources of food (sewage, manure rotten materials and poor latrine system) which increase the microbial load. Feeding on decaying or faecal matter as well as contaminated water by the snails could be the route of contamination in this study.

Status of resistance determinants and susceptibility pattern

The resistance determinants analysis showed that none of the isolates produced the ESBLs and possess plasmid (Table 3). Of the 56 organisms obtained, 21 (37.5%) were resistant to amoxicillin and amoxicillin/clavulanic acid, while 9 (16.07%) and 4 (7.14%) were resistant to tetracycline and co-trimoxazole respectively. One *E. coli* strain was resistant to ofloxacin. Resistance of isolates to beta-lactam antibiotics (amoxicillin and amoxicillin/clavulanate) were highly related to other antibiotic classes. There was no plasmid found in species investigated and the number of isolates resistant to different antibiotic classes were small.

Extended spectrum beta lactamases (ESBL) are enzymes extensively employ by Gram-negative bacteria to metabolize fluoroquinolone class of antimicrobials upon exposure or treatment. This resistance mechanism has been associated with acquisition of plasmid. Many bacteria with plasmids have potentials to spread antibiotic resistant genes, heavy metal resistant genes or any other resistance determinants through horizontal gene transfer mechanisms (Millan, 2018). In this study, we found no ESBLs and plasmid. Consequently, the bacteria may not be as virulent as those found in clinical setting which are usually difficult to treat due to acquisition of genetic elements. In addition, absent of this element may render the strains less virulent as plasmids code for virulent genes in bacteria (Elwell and Shipley, 1980; Guiney et al., 1994; Hammerl et al., 2012). The strains of bacteria in this study are, therefore, unlikely to transmit resistant or virulent genes to other neighbouring organisms within the same environment. However, although they did not possess plasmid and ESBLs, it does not negate their potentials for future acquisition of the same and mobilization of other resistance determinants such as integrons, thus, representing a public health risk.

The absence of resistant plasmid in the isolates did not hamper the expression of resistance to certain antibiotics. For instance, in this study, it shows the isolates were resistant to amoxicillin, amoxicillin/clavulanic acid, tetracycline and co-trimoxazole (Table 3). This is an indication that the resistance observed was likely to be intrinsically mediated by bacterial outer membrane and active efflux. In a review by Cox and Wright (2013), a number of studies indicated that certain genes and genetic loci contribute to intrinsic resistance phenotype. The observed resistance of the bacteria in this present study was in tandem with results of genomic and antibiogram studies on human microbiota environmental bacteria which revealed high level of intrinsic resistance (D'Costa et al., 2006; Dantas et al., 2008; Sommer et al., 2009). In an attempt to survive in harsh environment, many antibiotic producing bacteria have chromosomally encoded resistant elements which usually are located within the antibiotic biosynthetic cluster (Cundliffe et al., 2001; Cox and Wright, 2013). Although, the antibiotic-producing ability of the isolates in this study is not known, however, a study implicated E. coli and K. pneumoniae as antibiotic producers (Woappi et al., 2013). This might have been the case for these strains in addition to the aforementioned factors.

It is common for members of the family Enterobacteriaceae within snail environment to be less resistant because antibiotic pressure is either minimal or completely absent. Reports in literatures revealed that members of this family in other environmental settings have potentials to produce ESBLs and highly resistant to different antibiotic classes (CDC, 2013). In this study, innate resistance or other resistance mechanisms might have been responsible for the observed resistance against aforementioned antibiotics. However, resistance

Table 3: Resistance pattern of the isolates against selected antibiotic classes and status resistance determinants.

Antibiotics	Number of species and percentage resistance to different antibiotics (%)						
	Citrobacter spp. n=10	Klebsiella spp. n=18	Salmonella spp. n=7	Enterobacter spp. n=5	<i>E. coli</i> spp n=16		
AMX (10 μg)	3 (30.0)	7 (38.9)	3 (42.9)	2 (40.0)	6 (37.5)		
COT (10 µg)	1 (10.0)	2 (11.1)	1(14.3)	0	0		
GEN (10 μg)	0	0	0	0	0		
OFL (5 µg)	0	0	0	0	1 (6.3)		
AUG (30 μg)	3 (30.0)	7 (38.9)	3 (42.9)	2 (40.0)	6 (37.5)		
TET (30 µg)	3 (30.0)	2 (11.1)	0	1 (20.0)	3 (18.8)		
NAL (10 μg)	0	0	0	0	0		
NIT (300 µg)	0	0	0	0	0		
ESBL	0	0	0	0	0		
Plasmid	0	0	0	0	0		

n, sample size; AMX, amoxicillin; COT, cotrimoxazole; GEN, gentamicin; OFL, ofloxacin; AUG, amoxicillin/clavulanate; TET, tetracycline; NAL, nalidixic acid; NIT, nitrofurantoin; ESBL, Extended Spectrum beta-lactamase.

to the commonly used fluoroquinolone class of antimicrobials have been reported in 15-20% of patients with bacteraemia caused by *E. coli* (Sharma *et al.*, 2010).

CONCLUSION

The results revealed that the members of the Enterobacteriaceae encountered in this study contained neither ESBL nor plasmids, but few were resistant to different antibiotic classes. In addition, evolutionary relationship was noted more among isolates from distant than close isolation areas. The isolation of coliform bacteria (*E. coli, K. pneumoniae, C. freundii,* and *E. cloacae*) in snails represents a huge food safety risk to consumers of escargot. Hence, snails are reservoirs of pathogenic bacteria and high hygienic practices are required for consumers of snail meat to prevent infection with these pathogens. Awareness programs are highly recommended to the general public.

ACKNOWLEDGEMENTS

Authors wish to express appreciation to Babcock University for providing financial support for execution of this project through Babcock University grant number: BU/RIIC/2016/006.

REFERENCES

- Abdelhady, S. I., Elsheshtawy, N. M. and Hamdi, N. A. (2016). Rapid detection of extended spectrum β-lactamases production in Escherichia coli. International Journal of Applied Microbiology and Biotechnology Research 4, 109-116.
- Adagbada, A. O., Orok, A. B. and Adesida, S. A. (2011). The prevalence and antibiotic susceptibility of enteropathogens isolated from land snails commonly eaten in Cross River and Akwa Ibom States, South Southern Nigeria. Asian Journal of Pharmaceutical and Health Sciences 1(3), 123-127.

- Adegoke, A. A., Adebayo-Tayo, C. B., Inyan, U. C., Aiyegoro, A. O. and Komolafe, O. A. (2010). Snails as meat source: Epidemiological and nutritional perspective. *Journal of Microbiology and Antimicrobials* 2(1), 001-005.
- Adenegan K. O. and Bolaji-Olutunji, K. A. (2012).

 Analysis of edible snail (*Archachatina marginata*) marketing in Ibadan Metropolis, Oyo State, Nigeria. *International Journal of Applied Research and Technology* 1(2), 100-108.
- Agbonlahor, D. E., Imoyera, P. I., Igumboe, E. O., Akhabue, E. E., Ekundayo, P. A., Orhue, D. T., Obasuyi, B. O. and Osuide, O. O. (1994). The bacteriology of edible giant Africa land snail (Archachatina maginata) commonly found in Southern part of Nigeria. Journal of Medical Laboratory Sciences 4, 26-32.
- Andrews, W. H. and Wilson, C. R. (1975). Thermal susceptibility of *Salmonella* in the Moroccan food snail, *Helix aspersa. Journal of Association of Analytical Chemistry* **58(6)**, **1159-1161**.
- Armstrong, G. L., Hollingsworth, J. and Morris, J. G. Jr. (1996). Emerging foodborne pathogens: *Escherichia coli* O157:H7 as a model of entry of a new pathogen into the food supply of the developed world. *Epidemiology Reviews* 18(1), 29-51.
- Atnafie, B., Paulos, D., Abera, M., Tefera, G., Hailu, D., Kasaye, S. and Amenu, K. (2017). Occurrence of *Escherichia coli* O157:H7 in cattle feces and contamination of carcass and various contact surfaces in abattoir and butcher shops of Hawassa, Ethiopia. *BMC Microbiology* 17(1), 24.
- Bell, R. L. B., Jarvis, K. G., Ottesen, A. R., Mcfarland, M. A. and Brown, E. W. (2016). Recent and emerging innovations in *Salmonella* detection: A food and environmental perspective. *Microbial Biotechnology* 9(3), 279-292.
- CDC, Centers for Disease Control and Prevention (2013). Antibiotic resistance threats in the United States, 2013. https://www.cdc.gov/drugresistance/pdf/ar-threats-2013-508.pdf [Retrieved on 12 April 2020].

- Charrier, M., Fonty, G., Gaillard-Martinie, B., Ainouche, K. and Andant, G. (2006). Isolation and characterization of cultivable fermentative bacteria from the intestine of two edible snails, *Helix pomatia* and *Cornu aspersum* (Gastropoda pulmonata). *Biology Research* 39, 669-681.
- Choi, S., Lee, J. E., Park, S. J., Choi, S., Lee, S., Jeong, J., Kim, M., Woo. J. H. and Kim, Y. S. (2008). Emergence of antibiotic resistance during therapy for infections caused by Enterobacteriaceae producing AmpC β-Lactamase: Implications for antibiotic use. Antimicrobial Agents and Chemotherapy 52(3), 995-1000.
- Chukwudi, U. S. and John, U. (2013). Studies on the isolation of enteropathogens associated with the intestines of giant African land snails (*Achatina* and *Archachatina*) species sold in Gwagwalada, FCT, Abuja, Nigeria. Research 5(9), 56-59.
- CLSI, Clinical and Laboratory Standards Institute (2015). Performance Standards for Antimicrobial Susceptibility Testing; 25th Informational Supplement. CLSI Document M100-S25, Clinical and Laboratory Standards Institute, Wayne, PA.
- Coque, T. M., Baquero, F. and Canton, R. (2008).
 Increasing prevalence of ESBL-producing
 Enterobacteriaceae in Europe. Eurosurveillance
 13(47), 5437-5453.
- Cox, G. and Wright, G. D. (2013). Intrinsic antibiotic resistance: Mechanisms, origins, challenges and solutions. *International Journal of Medical Microbiology* 303(6-7), 287-292.
- Cundliffe, E., Bate, N., Butler, A., Fish, S., Gandecha, A. and Merson-Davies, L. (2001). The tylosinbiosynthetic genes of Streptomyces fradiae. Antonie Van Leeuwenhoek 79, 229-234.
- D'Costa, V. M., McGrann, K. M., Hughes, D. W. and Wright, G. D. (2006). Sampling the antibiotic resistome. *Science* 311, 374-377.
- Dantas, G., Sommer, M. O., Oluwasegun, R. D. and Church, G. M. (2008). Bacteria subsisting on antibiotics. Science 320, 100-103.
- Doublet, B., Boyd, D., Mulvey, M. R. and Cloeckaert, A. (2005). The Salmonella genomic island 1 is an integrative mobilizable element. Molecular Microbiology 55(6), 1911-1924.
- Ed-Dra, A., Filali, F. R., Karraouan, B., El, A. A., Aboulkacem, A. and Bouchrif, B. (2017). Prevalence, molecular and antimicrobial resistance of Salmonella isolated from Sausages in Meknes, Morocco. Microbial Pathogenesis 105, 340-345.
- Egbunike, G. N. (1997). What is animal science? And can Nigeria get out of malnutrition. *In*: Proceedings of 2nd Annual Conference, Animal Science Association of Nigeria (ASAN). Iyayi, E. A., Adeshehinwa, A. O. K. and Bamgbose, A. M. (eds.). Airport Hotel, Ikeja-Lagos, Nigeria. pp. 1-12.
- Elwell, L. P. and Shipley, P. L. (1980). Plasmidmediated factors associated with virulence of bacteria to animals. Annual Review of Microbiology 34, 465-496.

- Erickson, M. C., Liao, J. Y., Payton, A. S., Cook, P. W. and Ortega, Y. R. (2019). Survival and internalization of *Salmonella* and *Escherichia coli* O157:H7 sprayed onto different cabbage cultivars during cultivation in growth chambers. *Journal of the Science of Food and Agriculture* 99(7), 3530-3537.
- Ezeamagu, C., Imanatue, I., Dosunmu, M., Odeseye, A., Baysah, G., Aina, D., Odutayo, F. and Mensah-Agyei, G. (2018). Detection of methicillin resistant and toxin-associated genes in *Staphylococcus aureus*. Beni-Suef University Journal of Basic and Applied Sciences 7(1), 92-97.
- Fair, R. J. and Tor, Y. (2014). Antibiotics and bacterial resistance in the 21st century. Perspective in Medicinal Chemistry 6, 25-64.
- Fevre, C., Jbel, M., Passet, V., Weill, F. X., Grimont, P. A. and Brisse, S. (2005). Six groups of the oxy beta-lactamase evolved over millions of years in Klebsiella oxytoca. Antimicrobial Agents and Chemotherapy 49(8), 3453-3462.
- Guiney, D. G., Fang, F. C., Krause, M. and Libby, S. (1994). Plasmid-mediated virulence genes in nontyphoid Salmonella serovars. FEMS Microbiology Letter 124, 1-9.
- Hall, R. M., Collis. C. M., Kim, M. J., Partridge, S. R., Recchia, G. D. and Stokes, H. W. (1999). Mobile gene cassettes and integrons in evolution. *Annals New York Academy of Sciences* 870, 68-80.
- Hammerl, J. A., Freytag, B., Lanka, E., Appel, B. and Hertwig, S. (2012). The pYV virulence plasmids of Yersinia pseudotuberculosis and Y. pestis contain a conserved DNA region responsible for the mobilization by the selftransmissible plasmid pYE854. Environmental Microbiology Report 4, 433-438.
- Harris, P. N. A. (2015). Clinical management of infections caused by Enterobacteriaceae that express extended-spectrum β-lactamase and AmpC enzymes. Seminar in Respiratory Critical Care Medicine 36, 56-73.
- ICMSF, International Commission on Microbiological Specifications for Foods (2005). Microorganisms in Foods. 2nd Edn. Kluwer Academic/Plenum Publisher, New York. pp. 6, 84-86.
- Imevbore, E. A. and Ademosun, A. A. (1988). The nutritive value of the African giant land snail Archachatina marginata. Journal of Animal Production Research 8(2), 76-87.
- Janda, J. M. and Abbott, S. L. (2007). 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: Pluses, Perils, and Pitfalls. *Journal of Clinical Microbiology* 45(9), 2761-2764.
- Jukes, T. H. and Cantor, C. R. (1969). Evolution of protein molecules. *In*: Mammalian Protein Metabolism, Volume III. Munro, H. N. (ed.). Academic Press, New York. pp 21-132.
- Jummai, A. T. and Okoli, B. J. (2013). Antimicrobial potentials of Haemocyanin. Research Journal of Engineering and Applied Science 2(6), 446-449.
- **Kapperud, G. (1991).** Yersinia enterocolitica in food hygiene. International Journal of Food Microbiology **12(1), 53-65.**

- Kiranmayi, C. B., Krishnaiah, N. and Naga, E. M. (2010). Escherichia coli O157:H7 – An emerging pathogen in foods of animal origin. Veterinary 3(8), 382-389.
- Kirkan, S., Goksoy, E. O., Kaya, O. and Tekbiyik. S. (2006). In-viro antimicrobial susceptibility of pathogenic bacteria in rainbow trout (Oncorhynchus mykiss, Walbaum). Turkish Journal of Veterinary and Animal Sciences 30(3), 337-341.
- Kong, M., Liu, L., Chen, X., Driscoll, K. I., Mao, P., Böhm, S., Kad, N. M., Watkins, S. C., Bernstein, K. A., Wyrick, J. J., Min, J. H. and Van Houten, B. (2016). Single-molecule imaging reveals that Rad4 employs a dynamic DNA damage recognition process. Molecular Cell 64(2), 376-387.
- Kunwar, C. R., Singh, M. H., Mangla, M. V. and Hiremath, M. R. (2013). Outbreak Investigation: Salmonella food poisoning. *Medical Journal of Armed Forces India* 69, 388 -391.
- Lauzon, C. R., Bussert, T. G., Sjogren, R. E. and Prokopy, R. J. (2003). Serratia marcescens as a bacterial pathogen of Rhagoletis pomonella fies (Diptera: tephritidae). European Journal of Entomology 100(1), 87-92.
- Linton, A. H. and Hinton, M. (1988). Control of salmonella infections in broiler chickens by the acid treatment of their feed. Veterinary Record 123(16), 416-21.
- Machado, E., Coque, T. M., Rafael, C., João, S. C. and Luísa. P. (2013). Commensal Enterobacteriaceae as reservoirs of extended-spectrum beta-lactamases, integrons and sul genes in Portugal. Frontiers Microbiology 4 (80), 1-7.
- Millan, A. S. (2018). Evolution of plasmid-mediated antibiotic resistance in the clinical context. *Trends in Microbiology* 26 (12), 979-985.
- Morgan, D., Grant, K. A., Gage, H. D., Mach, R. H., Kaplan, J. R., Prioleau, O., Nader, S. H., Buchheimer, N., Ehrenkaufer, R. L. and Nader, M. A. (2002). Social dominance in monkeys: Dopamine D2 receptors and cocaine self-administration. *Nature Neuroscience* 5(2), 169-174.
- Munita, J. M. and Arias, C. A. (2016). Mechanisms of antibiotic resistance. *Microbiology Spectrum* **4(2)**.
- Ngenwi, A. A., Mafeni, J. M., Etchu, K. A. and Oben, F. T. (2010). Characteristics of snail farmers and constraints to increased production in West Africa. African Journal of Environmental Science and Technology 4(5), 274-278.
- Nwiyi, P. and Amaechi, N. (2011). Prevalence of enteric bacteria isolates from aquarium snail (*Ampullaria* spp.) in Abia State, Nigeria. *Online Journal of Animal and Feed Research* 3(1), 77-79.
- Obi, S. K. C. and Nzeako, B. C. (1980). Salmonella, Arizona, Shigella and Aeromonas isolated from the snail Achatina achatina in Nigeria. Antonie Leeuwenhoek 46(5), 475-481.
- Painter, J. A., Hoekstra, R. M., Ayers, T., Tauxe, R. V., Braden, C. R., Angulo, F. J. and Griffin, P. M. (2013). Attribution of foodborne illnesses,

- hospitalizations and deaths to food commodities by using outbreak data, United States, 1998-2008. Emerging Infectious Diseases 19(3), 407-415.
- Pitout, J. D. and Laupland, K. B. (2008). Extendedspectrum B-lactamase producing Enterobacteriaceae: an emerging public-health concern. *The Lancet Infectious Diseases* 8(3), 159-166.
- Pollari, F., Christidis, T., Pintar, K. D. M., Nesbitt, A., Farber, J., Lavoie, M. C., Gill, A., Kirsch, P. and Johnson, R. P. (2017). Evidence for the benefits of food chain interventions on E. coli O157:H7/NM prevalence in retail ground beef and human disease incidence: A success story. Canadian Journal of Public Health 108(1), e71-e78.
- Radzki, R. P., Bieńko, M., Polak, P., Szkucik, K., Ziomek, M., Ostapiuk, M. and Bieniaś, J. (2017). Is the consumption of snail meat actually healthy? An analysis of the osteotropic influence of snail meat as a sole source of protein in growing rats. *Journal of Animal Physiology and Animal Nutrition* 102(2), e885e891.
- Rangel, J. M., Sparling, P. H., Crowe. C., Griffin, P. M. and Swerdlow, D. L. (2005). Epidemiology of Escherichia coli O157:H7 outbreaks, United States, 1982-2002. Emerging Infectious Diseases 11(4), 603-609.
- Rupp, M. E. and Fey, P. D. (2003). Extended spectrum β-lactamase (ESBL)-producing Enterobacteriaceae. Considerations for diagnosis, prevention and drug treatment. *Drugs* 63(4), 353-65.
- Saga, T. and Yamaguchi, K. (2009). History of antimicrobial agents and resistant bacteria. *Japan Medical Association Journal* 52(2), 103-108.
- Saitou, N. and Nei, M. (1987). The neighbour-joining method: A new method for reconstructing phylogenetic trees. *Journal of Molecular Biology and Evolution* 4(4), 406-425.
- Saldanha, T., Gaspar, A., Santana, D. M. and Da, N. (2001). Composition of meat from the snail (*Achatina fulica*) produced in Iguape, SP. *Higiene-Alimentar* 15(85), 69-74.
- Sangeetha, A. V., Parija, S. C., Mandal, J. and Krishnamurthy, S. (2014). Clinical and microbiological profiles of shigellosis in children. Journal of Health Population and Nutrition 32(4), 580-586.
- Scallan, E., Hoekstra, R. M., Angulo, F. J., Tauxe, R. V., Widdowson, M. A., Roy, S. L., Jones, J. L. and Griffin, P. M. (2011). Foodborne illness acquired in the United States Major pathogens. *Emerging Infectious Diseases* 17(1), 7-15.
- Serrano, S., Medina, L. M., Jurado, M. and Jodral, M. (2004). Microbiological quality of terrestrial gastropods prepared for human consumption. *Journal of Food Protection* 67(8), 1779-1781.
- Sharma, J., Ray, P. and Sharma, M. (2010). Plasmid profile of ESBL producing Gram-negative bacteria and correlation with susceptibility to beta-lactam drugs. *Indian Journal of Pathology and Microbiology* 53(1), 83-86.

- Sommer, M. O., Dantas, G. and Church, G. M. (2009). Functional characterization of the antibiotic resistance reservoir in the human microflora. *Science* 325, 1128-1131.
- Stackebrandt, E. and Ebers, J. (2006). Taxonomic parameters revisited: Tarnished gold standards. *Microbiology Today* 33,152-155.
- Su, A. I., Wiltshire, T., Batalov, S., Lapp, H., Ching, K. A. and Block, D. (2004). A gene atlas of the mouse and human protein-encoding transcriptomes. *PNAS* 101(16), 6062-6067.
- Swerdlow, D. L., Woodruff, B. A., Brady, R. C., Griffin, P. M., Tippen, S., Donnell, H. D. Jr., Geldreich, E., Payne, B. J., Meyer, A. Jr. and Wellss, J. G. (1992). A waterborne outbreak in Missouri of *Escherichia coli* O157:H7 associated with bloody diarrhea and death. *Annals of Internal Medicine* 117(10), 812-819.
- Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S. (2013). Molecular Evolutionary Genetics Analysis Version 6.0. *Journal of Molecular Biology and Evolution* 30(12), 2725-2729.
- Tortorello, M. L. (2003). Indicator organisms for safety and quality-uses and methods for detection: Mini review. Journal of AOAC International 86(6), 1208-1217.
- Tumbarello, M., Spanu, T., Sanguinetti, M., Citton, R., Montuori, E., Leone, F., Fadda, G. and Cauda, R. (2006). Bloodstream infections caused by extended-spectrum-beta-lactamase-producing Klebsiella pneumoniae: Risk Factors, molecular epidemiology, and clinical outcome. Antimicrobial Agents and Chemotherapy 50(2), 498-504.
- Van Horn, J. D., Irimia, A., Torgeson, C. M., Chambers, M. C., Kikinis, R. and Toga, A. W. (2012). Mapping connectivity damage in the case of Phineas Gage. PLoS ONE 7(5), e37454.
- Van, T. T. H., Moutafis, G., Istivan, T., Thuoc, T. L. and Coloe, P. J. (2007). Detection of Salmonella spp. in retail raw food samples from Vietnam and characterization of their antibiotic resistance. Applied Environmental Microbiology 73(21), 6885-6890.
- Wells, J. G., Shipman, T. D. and Greeche, K. D. (1991). Isolation of *Escherichia coli* serotype O157:H7 and other Shiga like toxin producing *E. coli* from dairy cattle. *Journal of Clinical Microbiology* 29(5), 985-989.
- Wener, K. M., Schechner, V., Gold, H. S., Wright, S. B. Carmeli, Y. (2010). Treatment fluoroquinolones or with beta-lactam-beta-lactamase inhibitor combinations is a risk factor for isolation of extended spectrum-beta-lactamase-producing Klebsiella species in hospitalized patients. Antimicrobial Agents and Chemotherapy 54(5), 2010-2016.
- Woappi, Y., Gabani, P. and Singh, O. V. (2013). Emergence of antibiotic-producing microorganisms in residential versus recreational microenvironments. *British Microbiology Research Journal* **3(3)**, **280-294**.
- WHO, World Health Organization (2014). Antimicrobial Resistance, Global Report on Survellance. https://apps.who.int/iris/bitstream/handle/10665/11264

<u>2/9789241564748 eng.pdf;jsessionid=AB46C73542F AE14D406D32EB84E1B3CA?sequence=1</u> [Retrieved on 13 April 2020].