

Malaysian Journal of Microbiology

Published by Malaysian Society for Microbiology (In SCOPUS since 2011)

SHORT COMMUNICATION

Molecular detection and screening of *Wolbachia* infections in tropical bed bugs *Cimex hemipterus* (Hemiptera: Cimicidae) from Peninsular Malaysia populations

Nur Hassanah Mohd Hassan^{1,2}, Dinie Eyldira Ismail^{1,3}, Siti Nor Ain Seri Masran^{1,4} and Abdul Hafiz Ab Majid^{1*}

¹Household and Structural Urban Entomology Laboratory, Vector Control Research Unit, School of Biological Sciences, Universiti Sains Malaysia, 11800, Gelugor, Malaysia.

²Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia,11800, Gelugor, Malaysia.

³School of Biological Sciences, Universiti Sains Malaysia, 11800 Gelugor, Malaysia.

⁴Department of Environmental Health, Faculty of Health Sciences, Universiti Teknologi MARA, 94300, Kota Samarahan, Sarawak, Malaysia.

Email: abdhafiz@usm.my

Received 30 January 2018; Received in revised form 17 September 2018; Accepted 25 September 2018

ABSTRACT

Aims: Wolbachia is an endosymbiont and a Gram-negative genus bacterium which has received the spotlight in the field of research studies due to its multiple capabilities to affect it hosts, including the bed bugs (Hemiptera: Cimcidae). While most investigations concentrated on the common bed bugs (Cimex lectularius), no published studies have yet to be done on molecular screenings of Wolbachia associated with tropical bed bugs (C. hemipterus). The present study was undertaken to screen Wolbachia infection from tropical bed bugs from Peninsular Malaysia.

Methodology and results: We attempted to screen and characterize *Wolbachia* infections in tropical bed bugs from 22 different localities throughout Peninsular Malaysia using a molecular approach; multiple Polymerase Chain Reaction (PCR) assays with four sets of primer sequences.

Conclusion, significance and impact of study: Our findings yielded negative results of *Wolbachia* infections and, therefore, further confirmed that all bed bug samples from all localities in Peninsular Malaysia are free from *Wolbachia* infections. Our findings also suggested that the prevalence of *Wolbachia* in tropical bed bug populations in Peninsular Malaysia is very unlikely.

Keywords: Tropical bed bugs, C. hemipterus, PCR, Wolbachia, molecular detection

INTRODUCTION

The emergence of bed bug infestation in buildings and residential areas has caused a public nuisance worldwide. Two most common species of these bloodsucking parasites are Cimex lectularius (common bed bug) notably lives in the temperate zone and C. hemipterus (tropical bed bugs) that can be found in the tropical zone (Seri Masran and Ab Majid, 2017). These notorious ecto parasites are members in order Hemiptera that feed exclusively on the bloods of humans, birds and bats (Delauney et al., 2011). Although the bite of these miniscule creatures may cause skin irritations (Seri Masran and Ab Majid, 2017), their attacks, however, have not been associated with a disease transmission (Montes et al., 2002). Blow et al. (2001) reported that bed bugs are likely to involve in mechanical transmission of Hepatitis B virus despite Jupp et al. (1983) hypothetically stated that

the spread of Hepatitis B may occur due to Hepatitis B-contaminating bed bugs or infected faeces. The spread of bed bugs usually comes from international travellers, public places and even residential areas (Seri Masran and Ab Majid, 2017). Despite all the above-mentioned facts, there is no case report stated that bed bugs acted as a vector of pathogens to humans (Meriweather *et al.*, 2013).

In animal-microbial interactions, bed bugs are frequently associated with *Wolbachia*, a cytoplasmic intracellular symbiotic and maternally-inherited rickettsialike bacterium that is widely known to infect tremendous species of arthropods and nematodes (Jeyaprakash and Hoy, 2000; Werren and Windsor, 2000; Hilgenboeker *et al.*, 2008; Choi *et al.*, 2015; Akhoundi *et al.*, 2016). The parasitic *Wolbachia* selfishly initiates adverse effects to its hosts by influencing the reproductive alternation through cytoplasmic incompatibility, male killing, parthenogenesis,

speciation and feminization (O'Neil et al., 1992; 1997; Weeks and Breeuwer, 2001; Hilgenboeker et al., 2008; Werren et al., 2008; Salunkhe et al., 2014). Owing to these abilities, Wolbachia has been promoted as a promising candidate to control and end the spread of viral and parasitic pathogens of various mosquito-transmitted illnesses such as dengue fever and malaria (Shaw et al., 2016). Of further note, observations on a wide range of insect hosts have demonstrated that they can be infected by a single or multiple strain of Wolbachia (Raychoudhuryet al., 2009). For instance, a previous study by Choi et al. (2015) found that three species of butterflies were infected by different strains of Wolbachia in sequence typing.

The screening of *Wolbachia* has been done mostly in bed bugs of temperate zone, *C. lectularius*, although the presence of *Wolbachia* in bed bugs of tropical zone, *C. hemipterus* is possible. Hence, the purpose of this study was to screen *Wolbachia* infections in tropical bed bugs, *C. hemipterus* throughout Peninsular Malaysia by applying molecular techniques. A few modifications on PCR programs and primers were made to detect the presence of *Wolbachia* in bed bug samples. Results of this study were reported at the end of the paper.

MATERIALS AND METHODS

Bed bug samples

Samples of the tropical bedbug (*C. hemipterus*) collected during 2013 to 2015 from 22 localities throughout Peninsular Malaysia were obtained from Household and Structural Urban Entomology Laboratory, School of Biological Sciences, Universiti Sains Malaysia (Seri Masran and Ab Majid, 2017) (Table 1). Five individuals per localities were selected. The samples were labelled (Table 1) and stored in RNA later reagent in $-20~^{\circ}\text{C}$ to preserve the DNA sample from degraded (Seri Masran and Ab Majid, 2017).

DNA extraction

Bacterial DNA was extracted from the entire body of each C. hemipterus specimen following a method of Sakamoto and Rasgon (2006) with a minor adjustment. The specimens were left to be digested overnight (≈20 h) in the mixture of 200 µL of 1x phosphate buffered saline, 20 μL of Proteinase K and 200 μL of QGT buffer at 60 °C. Then, the lysate was vigorously shaken with 200 µL of QCB buffer and 200 uL of absolute ethanol to ensure the cells were completely lysed. The DNA binding, washing and elution steps were executed according to the manufacturer's protocol (Real Biotech Corporation, RBC, Taipei) with a minor adjustment where the elution steps were repeated twice to obtain a final volume of 70 µL. The DNA concentration was quantified on an Optizen NanoQ Spectrophotometer (Optizen, Korea). The extracted DNA was stored at -20 °C until use. DNA samples were verified by electrophoresis in 1% agarose gel prior to PCR amplification.

PCR Amplification

The extracted DNA samples were amplified by using PCR standard protocols and four sets of *Wolbachia* primers (Table 2). A total of 25 μL aliquot containing 12.5 μL of Master Mix (Econotaq/Plus green, Lucigen Corporation), 0.25 μL of each forward and reverse primer, 11.0 μL of nuclease free water and 1.0 μL of DNA template were used by following the manufacturer's protocol. The DNA fragments were amplified by PCR thermocycler (G-Storm, Gene Technologies Ltd, England) using various adjusted programs (Table 3). The amplified products were then evaluated in 1% agarose gel electrophoresis stained with 2.0 μL red safe before visualizing the gel under the UV light.

RESULTS

We screened 22 specimens of the tropical bed bugs for Wolbachia infections collected from different localities in Peninsular Malaysia. Our results found that all PCR amplification of the bacterial genes were negative although four different sets of specific primers were used (Table 4). The amplification was initially attempted using a set of internal primers (INTF2 and INTR2) that amplifies approximately 136 bp fragment from Wolbachia16S rDNA. Amplification was subsequently done for the surface protein (wsp) gene of Wolbachia sp. using primers 81F and 691R. However, the amplification with these primers also yielded a negative result. Next, we attempted to amplify the 16S rRNA gene (781 bp) using primers 553F-W and 1334R-W but was also not successful. A similar result was obtained in the amplification of an approximately 438 bp fragment from 16S rRNA gene when we attempted with primers WSpecf and WSpecr, where the amplification failed to produce any amplicons. Based on the results, we hereby assumed that our specimens are free from Wolbachia infections.

DISCUSSION

With the advent of PCR, molecular techniques have been used to partially circumvent traditional bacteriological methods (Dobson et al., 2002), several attempts were made to detect any signs of Wolbachia infections in tropical bed bugs samples using a few published primers during PCR amplification assays. These primer sequences were adopted in previous literature to prime the genetic sequences of Wolbachia in C. lectularius (Sakamoto and Basgon, 2006; Simoes et al., 2011; Siddiqui and Raja, 2015; Akhoundi et al., 2016). Numerous studies have been done to elucidate Wolbachia infections in multiple arthropods (Jiggins et al., 2001; Konecka and Olszanowski, 2015). These studies stand as huge contributing factors to understanding the physiological and biochemistry effects of endosymbiont bacterium to their hosts. It manipulates the hosts' reproduction system by male-killing (Jiggins et al., 2001), induces cytoplasmic incompatibility (Poinsont et al., 2003) and possesses the capability to feminize the

genetics of the male hosts (Hiroki *et al.*, 2002). Knowledge of *Wolbachia* is, therefore, fundamental as it plays a potential role in controlling the population size of the hosts. For this reason, multiple research studies have

been extensively done to screen the prevalence of *Wolbachia* in different arthropod hosts, including bed bugs.

Table 1: Collection sites, isolate codes, groups, and accession numbers of each bed bug in this study (Seri Masran and Ab Majid, 2017).

No.	Isolate code	Collection site	State	Collection date	Isolation source	Lat-Lon
1	KL	KLIA	Selangor	25 Feb. 2014	Lounge seat	2.75 N 101.70 E
2	KT	Kuala Terengganu	Terengganu	20 Aug. 2014	Apartment room (bedding)	5.32 N 103.15 E
3	IP	lpoh	Perak	17 Oct. 2014	Worker's dormitory (bedding)	4.59 N 101.09 E
4	SP	Sungai Petani	Kedah	26 Sept. 2014	Worker's dormitory (bedding)	5.61 N 100.53 E
5	JS	Jalan Sekerat, Alor Setar	Kedah	25 Sept. 2014	Worker's dormitory (bedding)	6.12 N 100.36 E
6	TS	Taman Saga, Alor Setar	Kedah	25 Sept. 2014	Residential room (bedding)	6.09 N 100.38 E
7	KG	Klang	Selangor	25 Nov. 2014	Residential room (bedding)	3.03 N 101.44 E
8	TI	Teluk Intan	Perak	18 Oct. 2014	Worker's dormitory (bedding)	4.04 N 101.04 E
9	НМ	Hutan Melintang	Perak	18 Oct. 2014	Worker's dormitory (bedding)	3.89 N 100.93 E
10	CK	Cheras	Selangor	27 Nov. 2014	Low cost apartment room (bedding)	3.11 N 101.72 E
11	SW	Senawang	Negeri Sembilan	29 Nov. 2014	Low cost apartment room (bedding)	2.71 N 102.01 E
12	BF	BatuFeringghi	Penang	25 Nov. 2014	Apartment room (bedding)	5.28 N 100.15 E
13	PD	Port Dickson	Negeri Sembilan	29 Nov. 2014	Worker's dormitory (bedding)	2.56 N 101.81 E
14	AR	Arau	Perlis	24 Sept. 2014	Worker's dormitory (bedding)	6.41 N 100.28 E
15	MU	Muar	Johor	25 Dec. 2014	Worker's dormitory (bedding)	2.04 N 102.56 E
16	KU	Kluang	Johor	24 Dec. 2014	Worker's dormitory (bedding)	2.03 N 103.30 E
17	RW	Rawang	Selangor	25 Nov. 2014	Worker's dormitory (bedding)	3.32 N 101.57 E
18	GL	Gelugor	Penang	03 Nov. 2014	Residential room (bedding)	5.37 N 100.30 E
19	СН	Cameron Highland	Pahang	23 Aug. 2014	Worker's dormitory (bedding)	4.49 N 101.38 E
20	KU	Kuantan	Pahang	22 Aug. 2014	Worker's dormitory (bedding)	3.82 N 103.30 E
21	ВН	Bandar Hilir	Melaka	26 Dec. 2014	Worker's dormitory (bedding)	2.19 N 102.25 E
22	BP	BalikPulau	Penang	13 May. 2014	Residential room (bedding)	3.00 N 101.53 E

Table 2: Primers used to screen Wolbachia infections.

Primer (F/R)	Short names	Primer sequence (5'-3')	Product size (bp)	Reference
INTF2	INTF2	AGTCATCATGGCCTTTATGGA		Sakamoto and Rasgon,
INTR2	INTR2	TCATGTACTCGAGTTGCA	136	2006
81F	81F	TGGTCCAATAAGTGATGAAGAAAC		
691R	691R	AAAAATTAAACGCTACTCCA	600	Akhoundi <i>et al.</i> , 2016
553F-W	553F-W	CTTCATRYACTCGAGTTGCWGAGT		
1334R-W	1334R-W	GAKTTAAAYCGYGCAGGBGTT	781	Simoes <i>et al.,</i> 2011
W-Specf	W-Specf	CATACCTATTCGAAGGGA		
W-Specr	W-Specr	AGCTTCGAGTGAAACCAATTC	438	Shaw <i>et al.</i> , 2016

Table 3: PCR programs involving steps of pre-denature, denature, annealing, extension and final extension with respective cycles.

Primer	Pre- denature		Denature		Annealing		Extension		Number	Final extension		Deference
Primer	T (°C)	D (sec)	T (°C)	D (sec)	T (°C)	D (sec)	T (°C)	D (sec)	of cycles	T (°C)	D (sec)	- Reference
INTF2/INTR2	95	320	95	60	55	60	72	60	40	72	320	Sakamoto and Rasgon, 2006
81F/691R	94	320	94	60	55	60	72	60	35	72	320	Zhou <i>et al.</i> , 1998
INTF2/INTR2 and 81F/691R	94	240	94	30	60	30	72	60	30	72	600	Seri Masran and Ab Majid, 2017
INTF2/INTR2 and 81F/691R	95	120	95	30	60	60	72	45	35	72	320	Siddiqui and Raja, 2015
553F- W/1334R-W	94	240	94	40	50	40	72	60	30	72	600	Zha <i>et al</i> ., 2014
553F- W/1334R-W	94	120	94	60	62	60	72	60	35	72	600	Simoes <i>et</i> <i>al</i> ., 2011
W-Specf/W- Specr	95	920	95	15	66	25	72	30	35	72	320	Shaw <i>et al</i> ., 2016

Table 4: Screening results for *Wolbachia* infections from tropical bed bug specimens based on PCR programs and primers proposed by numerous researchers.

PCR Program (C)	Primers used	Result
Sakamoto and Rasgon, (2006)	Sakamoto and Rasgon, 2006	Negative for Wolbachia detection
Zhou <i>et al.</i> , 1998	Akhoundi et al., 2016	Negative for Wolbachia detection
Seri Masran and Ab Majid, 2017	Sakamoto and Rasgon, 2006	Negative for Wolbachia detection
Seri Masran and Ab Majid, 2017	Akhoundi et al., 2016	Negative for Wolbachia detection
Siddiqui and Raja, 2015	Sakamoto and Rasgon, 2006	Negative for Wolbachia detection
Siddiqui and Raja, 2015	Akhoundi et al., 2016	Negative for Wolbachia detection
Zha et al., 2014	Simoes et al., 2011	Negative for Wolbachia detection
Simoes et al., 2011	Simoes et al., 2011	Negative for Wolbachia detection
Shaw et al, 2016	Shaw <i>et al.</i> , 2016	Negative for Wolbachia detection

In general, C. lectularius and C. hemipterus are two anthropophilic species with different abilities in tolerating several environmental factors especially the surrounding temperature (Omori, 1941). As such, the tropical bed bugs per se have a higher tolerance towards a high temperature due to its common exposure in tropical countries (Omori, 1941). In the same point of view, How and Lee (2014) also expanded the existing knowledge on water balance profile of common bed bugs examined by Benoit et al (2009) to tropical bed bugs, assuming that the environmental factors would contribute differently to the bed bugs. Thus, it can be suggested that the geographic distribution of Wolbachia differed in both species as well. A similar stand was also reported by Ahmed et al. (2015) in Wolbachia abundance residing in the Lepidoterans. Their study covered up a larger latitude range where their samples were collected from 36 countries including all continents in the exclusion of Antarctica. They concluded that climate and geography are strong predictors of Wolbachia infection frequency. Corresponding to this, Toju and Fukatsu (2011) inferred the same statement where their study substantiated a significant correlation between endosymbionts infection frequencies and climatic or ecological factors. However, this statement is contradicted with Akhoundi et al. (2016) where they suggested that there are no significant differences in infection frequencies and geographic ranges. Akhoundi et al. (2015) suggested this conclusion from a pool of bed bugs they collected from eight localities within the perimeter of France. Hence, it might be inappropriate and is arguable that the utilization of their methodology is not reproducible in the study of tropical bed bugs due to insufficient sample collections.

To validate our study, the PCR thermal settings were used according to the primer sequences adopted, while the annealing temperature was set as per recommended by the manufacturer (Sakamoto and Basgon, 2006; Simoes et al., 2010; Siddiqui and Raja, 2015; Akhoundi et al., 2016). All experimentations were carried out on samples preserved in RNA later reagent. However, as a measure of qualitative comparative towards other samples, fresh samples and samples stored in alcohol were also tested and they resulted in negative Wolbachia DNA detection as well, which, therefore, suggesting that the preservation method did not affect or degrade the DNA of the samples. This is strongly supported by Basnet et al. (2017)

where the data in their studies provided an evidential data demonstration in measuring DNA quality from various extraction techniques. Through an optical density measurement using a spectrophotometer, it is suggested that DNA can be extracted regardless of the preservation technique (Basnet *et al*, 2017). Our samples were kept frozen at -20 °C as per according to Mohammed *et al*. (2017). A similar preservation technique was employed by Simoes *et al*. (2010) and Akhoundi *et al*. (2016).

No Wolbachia infections were detected in our samples after amplification using four sets of specific primers in multiple PCR settings. We hypothesized that the gene pool of bed bugs that we screened are all Wolbachia-free

and it seems that Wolbachi are sidedin their bodies are unlikely. We also believed that Wolbachia is more prevalent in C. lectularius compared to C. hemipterus as has been reported earlier (Akhoundi et al., 2016; Sakamoto and Basgon, 2006; Siddigui and Raja, 2015; Simoes et al., 2011). However, we assumed that the higher individuals pooled per locality, the higher it is to detect the infected ones. Thus, a broader sample of bed bugs from various localities should be collected to robustly evaluate the prevalence of this bacterium. To our knowledge, the current study is the first to report on Wolbachia infections in C. hemipterus populations in tropical regions. In an informative manner, this pioneered report is useful in highlighting the status of Wolbachia infections in tropical C. hemipterus and further recognizing its occurrence in this region.

CONCLUSION

The present study allowed us to screen and analyse Wolbachia infections in a pool of five randomized individuals of bed bugs per 22 localities throughout Peninsular Malaysia. We concluded that our samples are free from Wolbachia infections as no DNA of this reproductive parasite was detected in our samples. Therefore, it can be further concluded that the prevalence of Wolbachia in tropical bed bugs, C. hemipterus is unlikely. However, we recommend a further analysis such as high throughput DNA sequencing such as Next Generation Sequencing (NGS) to better determine a much more accurate status of this bacterium in tropical bed bugs.

REFERENCES

- Ahmed, M. Z., Araujo-Jnr, E. V., Welch, J. J. and Kawahara, A. Y. (2015). *Wolbachia* in butterflies and moths: Geographic structure in infection frequency. *Frontiers in Zoology* 12(16), 1-9.
- Akhoundi. M., Cannet. A., Loubatier. C., Berenger. J. M., Izri. A., Marty. P. and Delaunay. P. (2016). Molecular characterisation of *Wolbachia* infection in bed bugs (*Cimex lectularius*) collected from several localities in France. *Parasite* 23(31), 1-6.
- Basnet, S., Narain, R. B., and Kamble, S. T. (2017). Preservation techniques affecting DNA extraction from Cimex lectularius (Hemiptera: Cimicidae). In 9th International conference on urban pests, Birmingham, UK, 9-12 July 2017(pp. 93-97). International Conference on Urban Pests (ICUP).
- Benoit, J. B., Lopez-Martinez, G., Teets, N. M., Phillips, S. A. and Denlinger, D. L. (2009). Responses of the bed bug, *Cimex lectularius*, to temperature extremes and dehydration: Levels of tolerance, rapid cold hardening and expression of heat shock proteins. *Medical and Veterinary Entomology* 23(4), 418-425.
- Blow, J. A., Turell, M. J., Silverman, A. L. and Walker, E. D. (2001). Stercorarial shedding and transtadial transmission of hepatitis B virus by common bed bugs

- (Hemiptera: Cimicidae). Journal of Medical Entomology 38(5), 694-700.
- Choi, S., Shin, S. K., Jeong, G. and Yi, H. (2015). Wolbachia sequence typing in butterflies using pyrosequencing. Journal of Microbiology and Biotechnology 25(9), 1410-1416.
- Delaunay, P., Blanc, V., Del Giudice, P., Levy-Bencheton, A., Chosidow, O., Marty, P. and Brouqui, P. (2011). Bedbugs and infectious diseases. Clinical Infectious Diseases 52(2), 200-210.
- Dobson, S. L., Marsland, E. J., Veneti, Z., Bourtzis, K. and O'Neill, S. L. (2002). Characterization of Wolbachia host cell range via the in vitro establishment of infections. Applied and Environmental Microbiology 68(2), 656-660.
- Hilgenboecker, K., Hammerstein, P., Schlattmann, P., Telschow, A. and Werren, J. H. (2008). How many species are infected with *Wolbachia*? A statistical analysis of current data. *FEMS Microbiology Letters* 281(2), 215-220.
- Hiroki, M., Kato, Y., Kamito, T. and Miura, K. (2002). Feminization of genetic males by a symbiotic bacterium in a butterfly, *Euremahecabe* (Lepidoptera: Pieridae). *Naturwissenschaften* 89(4), 167-170.
- How, Y. F. and Lee, C. Y. (2014). Effects of temperature and humidity on the survival and water loss of *Cimex hemipterus* (Hemiptera: Cimicidae). *Journal of Medical Entomology* 47(6), 987-995.
- Jeyaprakash, A. and Hoy, M. A. (2000). Long PCR improves Wolbachia DNA amplification: wsp sequences found in 76% of sixty-three arthropod species. Insect Molecular Biology 9(4), 393-405.
- Jiggins, F. M., von der Schulenburg, J. H. G., Hurst, G. D. and Majerus, M. E. (2001). Recombination confounds interpretations of Wolbachia evolution. Proceedings of the Royal Society of London B: Biological Sciences 268(1474), 1423-1427.
- Jupp, P. G., McElligott, S. E. and Lecatsas, G. (1983). The mechanical transmission of hepatitis B virus by the common bedbug (*Cimex lectularius* L.) in South Africa. South African Medical Journal 63(3), 77-81.
- Konecka, E. and Olszanowski, Z. (2015). A screen of maternally inherited microbial endosymbionts in oribatid mites (Acari: Oribatida). *Microbiology* 161(8), 1561-1571.
- Meriweather, M., Matthews, S., Rio, R. and Baucom, R. S. (2013). A 454 survey reveals the community composition and core microbiome of the common bed bug (Cimex lectularius) across an urban landscape. PLoS One 8(4), e61465.
- Mohammed, M. A., Aman-Zuki, A., Yusof, S., Md-Zain, B. M., & Yaakop, S. (2017). Prevalence and evolutionary history of endosymbiont Wolbachia (Rickettsiales: Anaplasmataceae) in parasitoids (Hymenoptera: Braconidae) associated with Bactrocera fruit flies (Diptera: Tephritidae) infesting carambola. Entomological Science, 20(1), 382-395.
- Montes, C., Cuadrillero, C. and Vilella, D. (2002).

 Maintenance of a laboratory colony of
 Cimexlectularius (Hemiptera: C imicidae) using an

- artificial feeding technique. *Journal of Medical Entomology* **39(4)**, **675-679**.
- Omori, N. (1941). Comparative studies on the ecology and physiology of common and tropical bed bugs, with special reference to the reactions to temperature and moisture. Taiwan Igakkai Zasshi= Journal of the Medical Association of Formosa 40(3), 555-636.
- O'Neill, S. L., Giordano, R., Colbert, A. M., Karr, T. L. and Robertson, H. M. (1992). 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. *Proceedings of the National Academy of Sciences* 89(7), 2699-2702.
- Poinsot, D., Charlat, S. and Mercot, H. (2003). On the mechanism of *Wolbachia*-induced cytoplasmic incompatibility: Confronting the models with the facts. *Bioessays* 25(3), 259-265.
- Raychoudhury, R., Baldo, L., Oliveira, D. C. and Werren, J. H. (2009). Modes of acquisition of Wolbachia: horizontal transfer, hybrid introgression, and codivergence in the Nasonia species complex. Evolution 63(1), 165-183.
- Sakamoto, J. M. and Rasgon, J. L. (2006). Geographic distribution of *Wolbachia* infections in *Cimex lectularius* (Heteroptera: Cimicidae). *Journal of Medical Entomology* 43(4), 696-700.
- Salunkhe, R. C., Narkhede, K. P. and Shouche, Y. S. (2014). Distribution and evolutionary impact of Wolbachia on butterfly hosts. Indian Journal of Microbiology 54(3), 249-254.
- Seri Masran, S. N. A. and Ab Majid, A.H., 2017. Genetic diversity and phylogenetic relationships of cytochrome C oxidase subunit 1 in Cimexhemipterus (Hemiptera: Cimicidae) populations in Malaysia. *Journal of Medical Entomology* 54(4), 974-979.
- Shaw, W. R., Marcenac, P., Childs, L. M., Buckee, C. O., Baldini, F., Sawadogo, S. P., Dabiré, R. K. Diabaté, A. and Catteruccia, F. (2016). Wolbachia infections in natural Anopheles populations affect egg laying and negatively correlate with Plasmodium development. Nature Communications 7(11772), 1-7.
- Siddiqui, S. S. and Raja, I. A. (2015). Molecular detection of endosymbiont bacteria Wolbachia in bed bug species Cimex lectularius from Vidarbha region of India. International Journal of Life Sciences 3(3), 200-204.
- Simoes, P. M., Mialdea, G., Reiss, D., Sagot, M. F. and Charlat, S. (2011). Wolbachia detection: An assessment of standard PCR protocols. Molecular Ecology Resources 11(3), 567-572.
- **Toju, H. and Fukatsu, T. (2011).** Diversity and infection prevalence of endosymbionts in natural populations of the chestnut weevil: Relevance of local climate and host plants. *Molecular Ecology* **20(4), 853-868.**
- Weeks, A. R. and Breeuwer, J. A. J. (2001). Wolbachia—induced parthenogenesis in a genus of phytophagous mites. Proceedings of the Royal Society of London B: Biological Sciences 268(1482), 2245-2251.
- Werren, J. H. and Windsor, D. M. (2000). Wolbachia infection frequencies in insects: Evidence of a global

- equilibrium? Proceedings of the Royal Society of London B: Biological Sciences 267(1450), 1277-1285.

 Werren, J. H., Baldo, L., and Clark, M. E. (2008).

 Wolbachia: master manipulators of invertee biology. Nature Reviews Microbiology 6(10), 741-751.
- Zha, X., Zhang, W., Zhou, C., Zhang, L., Xiang, Z., and Xia, Q. (2014). Detection and characterization of Wolbachia infection in silkworm. Genetics and Molecular Biology 37(3), 573-580.
- Zhou, W., Rousset, F. and O'Neill, S. (1998). Phylogeny and PCR-based classification of *Wolbachia* strains using wsp gene sequences. Proceedings of the Royal Society of London B: Biological Sciences 265 (1395), 509-515.