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ABSTRACT

Introduction: Patients with Nasopharyngeal carcinoma (NPC) usually diagnosed at advanced cancer stage and re-
current case. Racl have become an emerging therapeutic target for metastasis cancer. This gene is critically involved
in cell polarization and reactive oxygen species-mediated cell killing. This study aims to investigate the RacT activ-
ities in NPC/HKT1 cell line using siRNA approach and evaluate the calcium deposition profile. Methods: The NPC/
HK1cells were transfected with Rac7-siRNA (siRac7) at concentrations of 50nM, 100nM and 200nM for 24 hours
and stained with alizarin red s for calcium mineralization profile. Levels of Racl gene expression were measured via
qRT-PCR followed by the time dependent assessment for 24, 48 and 72 hours. Results: Findings revealed that siRac1
concentrations of 200nM (p-value <0.02) and 100nM (p-value <0.016) had significant RacT suppression while 50nM
(p-value <0.076) had the least suppression. On the other hand, from alizarin red S staining showed no significant
changes for calcium mineralization activity on treated and control cells. However, siRacT treated cells at 200nM
showed presence of intracellular organelle swelling and loss of membrane integrity in 70% of the cells. This observa-
tion could possibly be linked to early sign of necrosis activity, hypoxia and disruption in intracellular calcium influx.
Conclusion: This study suggest that Rac7 gene suppression might be involved in disruption of calcium deposition
and reactive oxygen species-mediated NPC/HK1 cell killing. Further insight on the RacT molecular mechanism are
needed to understand its potential role as therapeutic target for NPC.

Keywords: Nasopharyngeal carcinoma, Rac1, Calcium mineralization in cancer, siRNA therapeutics, Reactive ox-
ygen species-mediated cell killing

been associated with the development of numerous
human cancers (6) and associated with tumors
malignancy phenotype (7, 8).
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INTRODUCTION

Nasopharyngeal carcinoma (NPC) is one of the leading
head and neck cancer which are predominantly in Asian
countries (1,2). Presently, nasopharyngeal malignancies
are usually diagnosed at late stage. NPC stage IV patients
have a poor prognosis, even after receiving an effective
chemotherapy and associated with recurrence cases
(3, 4). Therefore, the discovery on potential molecular
biomarkers are useful for effective diagnostic, prognostic
tools and even in therapeutic strategies (5). A number
of critical regulatory pathways in NPC that contribute
to the malignancy phenotype, resistance behavior and
recurrence cases were still not clear. Many studies have
reported that upregulated level of Racl expression has

which are involved in the malignant transformation
events such as invasion, metastasis and angiogenesis (7).
These cellular pathways are regulated via reactive oxygen
species (ROS) and calcium (Ca*) influx activities (8, 9).
This interaction of ROS and Ca** stimulates signaling
cascades in the cells promoting proliferation and
subsequent metastasis (10). Cancer cell metastasis relies
on the actin cytoskeleton activities via the filopodia and
lamellipodia (11). The actin dynamics that necessitate
the contractility and directional movement stabilization
of cells is regulated via Ca** signaling and kinases (12,
13). Furthermore, this phenomenon also link to the ROS
activities via ROS-dependent HIF-1a and Rho GTPases
in the mitochondrial cristae and intermembrane spaces
(14) which drives the migration activities (15-18).
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Therefore, Racl might present as potential therapeutic
target in cell polarization and reactive oxygen species-
mediated cell killing mechanisms for NPC (19).

This study investigated the suppression of RacT on NPC
by using small interfering RNA (siRNA) approach. The
optimization work on concentration and time dependent
suppression expressions of Racl were studied along
with calcium deposition profile. Understanding of Rac1
activities on NPC cell line are crucial in anticipation of
developing an efficiency therapeutic target against NPC.

MATERIALS AND METHODS

Cell culture

NPC/HK1cell line was kindheartedly given by Professor,
George Tsao of University of Hong Kong (20) and 105
cells was cultured in RPMI 1640 supplemented with
10% fetal bovine serum (Gibco, Life Technologies,
Carlsbad, CA, USA).

siRac1 concentration and time dependent assessment
The siRacl obtained from ThermoFisher Stealth
RNAi was transfected into 105 NPC/HK1 cells in
12 well plates using SureFect transfection reagent
(SABioscience) according to manufacturer’s instruction.
The concentration dependent Racl suppression were
assessed at 50, 100 and 200nM for 24 hours (21-23).
For time dependent suppression siRac1 with 100nM
were further studied in 105 NPC/HK1 using 24 well
culture plates at 24, 48 and 72 hours (22). The untreated
cells with siRacT were used as RacT expression control.
All the experiments were performed in triplicates.
The RNeasy extraction kit (Qiagen), QuantiNova
cDNA synthesis kit (Qiagen) and QuantiNova SYBR
Green PCR kit (Qiagen) were used to prepared the
samples following the manufacturer’s instruction.
The gene expression was assessed using StepOnePlus
real time PCR system (Applied Biosystems) with a set
of Racl primers: 5'-GCCAATGTTATGGTAGAT-3'
and 5-GACTCACAAGGGAAAAGC-3'. A set of
GAPDH  primer:  5-AACGGATTTGGTCGTATTG-3’
and 5-GCTCCTGGAAGATGGTGAT-3"  wused  as
an endogenous control (23). GAPDH was used for
normalization of the data of the expressed gene, because
of its constant expression and has previously been used
as endogenous control in many NPC cell lines including
NPC/HK1 cells (24). Vanlnsberghe et al., (2018) has
also used GAPDH as endogenous control in a related
recent experiment (25).

Alizarin Red S Staining

The protocol was carried out according to Eapen A., et
al. (26). Briefly, the cells were washed and fixed with 4%
formaldehyde at room temperature for Thr and stained
with 2% solution of Alizarin Red S. The images were
taken at x 20 objective under phase contrast microscope
(Olympus CKS40).

Statistical Analysis

Statistical analyses were performed with SPSS v16.0
(SPSS, Chicago, IL, USA). The average of the experimental
groups were compared with that of control group using
paired Student’s t-test to compare the relative expression
of RacT. Any value less than p < 0.05 was regarded as
being statistically significant.

RESULTS

siRac1 Transfection Profiles

After 24 hours of siRacl transfection into HK1/NPC
cells at varying siRacl concentrations, we observed
differential suppression of RacT mRNA expressions from
control, 50, 100to 200nM (Fig. 1). Significant suppression
amongst the three treated replicates were achieved at
siRac1 200nM with 80% followed by 100nM with 65%
and 50nM with 50% mRNA suppression compared to
control. Both siRac1 200nM and 100nM have p value <
0.05 (p value < 0.02 and p value <0.016 respectively)
while 50nM has p-value < 0.076 (Fig.1). A consistent
Rac1 suppression in NPC/HK1 cells was observed at the
three time points of 24, 48 until 72 hours as represented
in the histogram with all having p value < 0.05 (Fig. 2).
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Figure 1: siRac1 Concentration Dependent Suppression Profile.
Histogram from triplicate data showed 80% suppression of RacT was
achieved at siRacT concentration 200nM (p <0.02), 65% for 100nM
siRacT (p <0.016) and 50% for 50nM siRac1 (p <0.076). Experiments
were carried out in triplicates.
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Figure 2: siRacT1 Time-Dependent Suppression Profile. Rac7 sup-

pression on NPC/HK1 cells at 100nM were consistent at the three
time points starting 24, 48 until 72 hours. The histogram represents
triplicate experiments with p value < 0.05.
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Alizarin Red S Staining

The evaluation of calcium mineralization profile of NPC/
HK1cells using alizarin red s, revealed no significant
changes in the staining intensity of siRac? 50, 100 and
200nM transfected cells when compared to control cells
(Fig. 3). siRacT treated cells at 200nM showed presence

.

of intracellular organelle swelling and loss of membrane
integrity associated early sign of necrosis activity
(Fig.3d) compared to control NPC/HKT cells (Fig. 3a).
Each image represents quadruples the experiments with
magnification at 20 x objective and tool bar 100pm.
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Figure 3: Alizarin Red S Staining of siRac1 treated NPC/HK1cells. There is no clear difference in calcium mineralization activities between (a)
control and siRac1 transfected cells at concentrations of (b) 50nM, (c) 100nM and (d) 200nM. However, siRac treated cells at 200nM showed
intracellular organelle swelling and loss of membrane integrity sign (Fig. 3¢ and 3d) that could be associated with the necrotic-like phenotype
(black arrow). Each images represent quadruples the experiments with magnification at 20 x objective and tool bar 100pm.

DISCUSSION

Our findings revealed that Racl suppression in NPC/
HK1cells was achieved between 50% - 80% at 100
and 200nM siRNA (Fig. 1). siRNA concentration plays
are crucial in determination of targeting specificity and
extortionate siRNA concentration analogous the off
target effects (27, 28). Further investigation on siRNA
concentration at 100nM showed consistent suppressions
between the time periods from 24-72 hours (Fig. 2).
Note that, the suppression of Racl was achieved near
100% when using smaller culture systems in the 24 well
plate (same transfection concentration and cell number)
(Fig. 2) compared to 12 well plate (Fig. 1). The efficiency
of cellular uptakes of siRacT could also be influenced
by available space and seems more effective with
smaller spaced culture systems. The siRaci crest effects
on transfected cells have been reported to be between

36-48 hours and starts to lower at 96 hours depending
on the cell line model (29, 30).

From the alizarin red s staining profiles revealed that
siRacl concentrations treatment showed no clear sign
on changes of calcium mineralization (Fig. 3) compared
to control NPC/HKT cells (Fig. 3a), notwithstanding
distinctly the siRacT treated cells showed intracellular
organelle swelling and loss of membrane integrity
sign (Fig. 3c and 3d). Generally, this observation is an
early sign of necrosis that could be linked to prolonged
periods of severe hypoxia, an aggravated cellular re-
oxygenation injury that associated with increases cellular
ROS formation and Ca2+ influx/deposition activities
(31-34). By contrast, an emerging evidence suggests that
the coordination between Ca2+ and ROS is disrupted
in cancerous cells causing resistance to apoptosis (35-
38). This study suggests that the mechanistic activities
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of the necrosis could be triggers by interchange signals
from cellular Ca2+ and ROS activities. However, further
study on the necrosis marker are needed to validate
these findings.

Rac1 gene plays crucial role in controlling the cellular
redox state (39) thus suppression of this gene could
be linked with reactive oxygen species-cell killing
mechanisms. This phenomenon could be explained by
the activities of ROS and Rho GTPase which are also
known as the switches for killing (40-43). Thus, RacT
suppression could involve positive cellular regulation
events of Rho proteins in NPC/HK1 cells, thus present as
potential therapeutic target.

CONCLUSION

In conclusion, this study suggests that Racl showed
a possible molecular switch for necrosis in targeting
the reactive oxygen species-mediated NPC/HK1 cell
killing. Further studies are needed to understand the
necrosis molecular mechanism of RacT functioning as a
therapeutic target for NPC.
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