尘肺病影像学诊断的研究进展

曾刘桃,陈钧强,蒋兆强 综述;徐秀芳 审校

杭州医学院公共卫生学院, 浙江 杭州 310051

摘要: 尘肺病是我国危害严重的一类职业病。早期影像学检查是诊断和防治尘肺病的重要措施之一。数字化X线摄影(DR)、计算机断层扫描(CT) 在尘肺病筛查诊断中有着重要的地位,近年来兴起的人工智能技术在尘肺病诊断中也有一定应用。本文综述了DR技术参数调试与质量控制、人工智能计算机辅助系统优化以及CT辅助尘肺病诊断等方面的最新进展,总结了3类技术的优点及目前应用中存在的问题,为尘肺病影像学诊断提供研究方向。

关键词: 尘肺病; 诊断; 数字化X线摄影; 人工智能; 计算机断层扫描

中图分类号: R135.2; R445 文献标识码: A 文章编号: 2096-5087 (2021) 12-1236-04

Progress in imaging diagnosis of pneumoconiosis

ZENG Liutao*, CHEN Junqiang, JIANG Zhaoqiang, XU Xiufang *School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang 310051, China

Abstract: Pneumoconiosis is a serious occupational disease in China. Early imaging examination is one of the important measures for the diagnosis, treatment and prevention of pneumoconiosis. Digital radiography (DR) and computed tomography (CT) play an important role in the screening and diagnosis of pneumoconiosis, as well as the recent rise of artificial intelligence (AI) technology. This paper reviews the latest progress in technical parameter debugging and quality control of DR, optimization of AI computer—aided system and CT—aided diagnosis of pneumoconiosis, summarizes the advantages and problems in the application of the three technologies, providing research directions for imaging diagnosis of pneumoconiosis.

Keywords: pneumoconiosis; diagnosis; digital radiography; artificial intelligence; computed tomography

尘肺病是生产活动中持续吸入生产性粉尘而引起的一系列肺部疾病的总称。近年来,美国等发达国家的尘肺病发病率及死亡人数已大幅下降[1-2]。但尘肺病仍是我国危害严重的一类职业病[3],2019年全国共报告各类职业病新病例 19 428 例,其中尘肺病15 898 例,占 82% [4]。尘肺病的早期筛查、诊断对其防治尤为重要。接尘工人尘肺病早期影像学检查是预防尘肺病的重要措施之一,近年来国内外学者对数字化 X 线摄影(digital radiography,DR)、计算机断层扫描(computed tomography,CT)和人工智能辅助诊断进行了大量研究和临床实践,本文就这 3 类技

DOI: 10.19485/j.cnki.issn2096–5087.2021.12.010

基金项目: 国家自然科学基金 (61976075); 浙江省重点研发计划 (2019C03002); 浙江省医药卫生科技计划项目 (2019RC142)

作者简介:曾刘桃,硕士,主要从事尘肺病影像诊断研究

通信作者: 徐秀芳, E-mail: 2659189077@gg.com

术的应用进展情况作一综述,为尘肺病影像学诊断提供参考。

1 DR 技术的质量控制

以往传统高千伏摄影胸片是尘肺病诊断和分期的主要依据。DR 技术的开发使用有效提高了胸片质量,且能清晰全面地显示肺部结构,可操作性强[5]。DR 技术比传统 X 线摄影分辨率高、成像质量理想、诊断效果好、临床应用价值高[6]。另外,DR 技术还具有强大的图像后处理功能,如胸片图像的放大、反转、降噪、灰阶变换、对比度处理、空间频率调整和特殊算法等;但这些功能也具有两面性,如开启边缘增强、降噪会对胸片质量产生图像失真等负面影响[7]。因此,需要对 DR 技术的使用及图像质量进行监督和评价,确保其诊断尘肺病的正确性和稳定性。

近年来, DR 技术的质量控制出现了新的进展。

有研究指出, DR 胸片使用边缘增强的过程实际上是 一个图像失真的过程,使用星卡图对判断是否使用了 边缘增强技术具有可行性[7],这为胸片质量控制提 供了新方法。另有研究发现,通过更改各个肺区图像 的亮度和对比度,再从不同的窗口展示各肺区影像, 能避免一些因为乳房、脂肪重叠造成的胸片质量问 题,从而利于尘肺病的准确诊断[8-9]。而王峥等[10] 对 DR 技术图像后处理参数中的亮度/对比度进行优 化后, 其与高千伏摄影胸片依然具有良好的等效性。 余梁等[11] 则发现 DR 联合双能量减影技术在尘肺病 诊断中与传统 X 线片小阴影总体密集度表现具有良 好的一致性, 高千伏摄影胸片尘肺病检出率为 71.88%, DR 联合双能量减影技术的尘肺病检出率更 高,为90.63%。韩国学者设计了一种新的降噪处理 技术——基于多尺度噪声协方差的空间自适应降噪算 法,包括非局部均值的多尺度频率处理和噪声白化技 术,使用这种技术后,即便是降低到常规剂量一半的 低剂量胸片,其图像质量也不低于常规剂量[12]。英 国研究人员优化了 DR 胸部成像的管电压参数,显示 80~100 kVp 的中档管子电压可保证一般成年人 DR 胸片的最佳成像质量,为 DR 胸部成像提供了可靠范 围[13]。

DR 技术的质量控制也存在一些问题。星卡图用 于判断降噪等其他处理技术的效果暂不明确, 最终能 否广泛用于 DR 胸片的质量控制有待验证。DR 技术 用窗口技术处理图像目前只发现在肥胖和女性尘肺病 患者上有优势[8-9]。针对亮度和对比度优化方面的研 究样本量较少,还需进一步确认能否更新最佳参数范 围。以上降噪技术及管电压调整还不适用于尘肺病胸 片诊断,不符合我国目前制定的尘肺病诊断标准[14], 能否应用于我国尘肺病影像诊断有待进一步研究探 讨。另外,以往 DR 胸片与高千伏摄影胸片一致性的 研究多为配对设计,即阅片者对同一患者的 DR 胸片 和高千伏胸片进行评价; 而实际上, 阅片者、患者与 胸片之间存在多层次嵌套作用,采用 Kappa 系数并 不能反映出真实的一致性。今后应加强胸片质量及阅 片结果统计分析的方法学研究,提高研究结果的准确 性。

2 人工智能在尘肺病辅助诊断中的应用

人工智能在尘肺病辅助诊断方面,尤其对无尘肺和一期尘肺的鉴别诊断,发挥了一定作用,可提高诊断准确性,减轻医师负担^[15]。目前,数字胸片是尘肺病筛查和诊断的主要手段,基于数字胸片的智能辅

助诊断系统的开发受到国内外学者的关注。

有研究发现,深度卷积神经网络可以通过针对性 学习训练,根据一些病理异常对胸片图像进行识别分 类[16]。这一技术用于临床区分正常与异常胸片,并 进行自动预分诊,效果良好[17]。WANG等[18]发现 经典的深度卷积神经网络 INSTIMATION-V3 与其他 模型和放射科医师相比,对尘肺病 DR 图像的分类效 果较好, 在尘肺病筛查中具有一定的可行性。王峥 等[19] 利用全卷积神经网络 U-Net 模型判断 DR 图 像, 尘肺病诊断正确率达 95%, 2 位医师的诊断正确 率在 90% 以下,说明基于此模型的计算机辅助诊断 可提高尘肺病诊断的准确性。日本学者开发了一种基 于 4 种肺纹理特征的三级人工神经网络分类计算机 辅助诊断系统,有助于放射科医师对尘肺病进行分 级^[20]。罗海峰等^[21-22]使用误差反向传播算法(back propagation, BP) 神经网络与傅里叶变换提取图像功 率谱能量特征值相结合的方法,实现了对 DR 胸片阴 影密集度的有效判读,而且 BP 神经网络与灰度共生 矩阵结合的模型也能达到上述效果。

以上研究体现了人工智能辅助诊断尘肺病的可行性与重要性,但目前实际应用并不多。人工智能在短时间内还不能代替专业医师进行尘肺病诊断 [23],主要有以下几点原因:首先,人工智能对尘肺小阴影的识别及提取方法尚不成熟;其次,胸片质量参差不齐;再次,尘肺病虽然有明确的诊断标准,但仍带有主观性,专家的读片水平有高有低,难以作为金标准对照,即使是最优秀的尘肺病诊断医师,对同一个胸片的判断结果仍然存在一定的误差;最后,深度卷积神经网络和人工神经网络模型能否进一步提高对尘肺病的诊断效能,也需要进一步深入研究验证 [18-22]。

3 提高 CT 辅助诊断的价值

单纯靠 X 线胸片诊断尘肺病有一定局限性,尤其难以辨别早期病变,而 CT 能更准确地反映尘肺病的形态学改变 [24]。CT 在石棉肺的辅助诊断中起关键作用 [25]。PREISSER 等 [26] 研究指出,接触石棉工人的肺功能改变与 CT 结果存在中等程度相关性,CT表现与石棉相关早期病变有关。高分辨率 CT (high resolution CT, HRCT) 使尘肺病的病理表现和影像表现之间有了更全面的联系,且在深入诊断煤矿粉尘尘肺病方面优于 X 线胸片 [27-28]。ŞENER 等 [29] 研究表明,HRCT 在早期发现尘肺方面优于 X 线胸片。张柏林等 [30] 研究发现,多层螺旋 CT 对尘肺病一期的阳性检出率高于 DR 技术,且能准确鉴别尘肺病分

期。兰军等 [31] 研究发现多层螺旋 CT 冠状面重建图像可有效观察肺部病变征象,成像效果较好,且可有效鉴别尘肺合并症。HERTH 等 [32] 研究发现,定量CT 法可以准确和重复检测疾病在肺部的位置,并量化疾病范围和总体严重程度。CT 具有更高的分辨率和灵敏度 [33-34],诊断尘肺合并肺结核效果更好;也有研究指出 HRCT 检查对于尘肺病及其合并症的诊断更加明显 [35]。因此,相较于 X 线胸片,CT 可能更适合用于尘肺及其合并症的诊断,尤其是常见的尘肺病合并肺结核。

在不影响成像质量的前提下降低 CT 辐射剂量是 目前研究关注的重点。MANNERS 等 [36] 研究结果表 明,超低剂量 CT (ultra-low dose CT, ULDCT) 可提 供足够的放射学证据,为石棉肺的诊断提供依据。 LUDES 等[37] 研究也指出, ULDCT 在筛查石棉相关 胸膜疾病等方面有很高的应用价值,筛查结果并不逊 色于标准 CT。还有研究认为 ULDCT 对于接触石棉产 生的相关病变, 如肺结节、弥漫性胸膜增厚和钙化胸 膜斑块的诊断能力高,建议用于石棉接触相关疾病的 一线检查 [38]。陈丽琨等 [39] 发现低剂量多层螺旋 CT 最 大密度投影技术能达到尘肺病筛查、诊断的临床基本 要求。WETZL 等[40-41] 发现低剂量双源 CT 对儿童肺 部病变评估效果优于 DR 技术, 若联合频谱整形与高 级迭代重建技术使用,可大幅降低辐射剂量,且保持 诊断质量。由此可见,低剂量 CT 既能降低对受检者 的辐射影响,又能起到良好的尘肺病辅助诊断作用。

CT 在辅助尘肺病诊断应用中同样面临一些问题。 CT 影像表现与肺活量测定结果未发现相关性,因此 在评价肺功能方面并不优于 X 线胸片 [29]; 且尘肺病 CT 影像表现无特异性,无统一的标准图像进行诊断 分期 [27]。另外,不同类型尘肺病 CT 影像特征不同, 低剂量 CT 只针对某些类型尘肺病的病变更灵敏,对 于尘肺病合并其他合并症的诊断效果还未得到验证, 且低剂量 CT 在肥胖及间质性肺炎患者中应用情况不 良,是否值得推广应用有待进一步研究 [37]。 双源 CT 以及联合其他重建技术后得到的 CT 图像用于尘肺病 诊断的效果有待验证,目前此类技术在临床上应用较 少。因此,CT 更适用于对尘肺病 DR 早期诊断的补 充检查,但其费用昂贵且辐射剂量更大,应主要由医 生根据情况判断是否需要用于辅助诊断。

4 结论与展望

本文总结了 3 类尘肺病影像学诊断技术的研究 进展。DR 技术是目前尘肺病诊断的主要手段,有一 套较为完善的诊断标准,成像效果和尘肺病诊断效果良好,图像处理功能丰富;但不同设备的参数标准尚需完善,不同年资及经验的医师诊断的准确性和一致性仍需提高。如何调试 DR 设备参数达到最佳,提高胸片质量和尘肺病诊断正确性是值得研究的方向。此外,使用专业显示器进行尘肺病读片,其图像质量如何评价也是值得探索的新领域。

人工智能的临床应用较少,但其对 DR 图像的识别分类具有可开发性,也能辅助提高医师的尘肺病诊断效率。在尘肺病诊断应用中,单一神经网络模型的性能不够理想,组合模型能克服单一模型的劣势,但不同组合的性能和尘肺病诊断效果有待进一步研究。

CT 技术是尘肺病辅助诊断的主要手段,其分辨率和灵敏度高,在尘肺病及其合并症诊断方面具有较大优势,但应用时存在限制,如 CT 检查的价格昂贵、辐射大。目前还未将 CT 辅助诊断尘肺病及合并症纳入尘肺病诊断标准。今后研究可着眼于 CT 辅助诊断尘肺病的最优辐射剂量,尘肺病 CT 图像与 DR 图像表现、尘肺病病理表现的联系等,低剂量 CT 是否适用于尘肺病合并症的诊断也值得探讨。

参考文献

- [1] HAN S, CHEN H, HARVEY M A, et al. Focusing on coal workers 'lung diseases: a comparative analysis of China, Australia, and the United States [J]. Int J Environ Res Public Health, 2018, 15 (11): 1-26.
- [2] PERRET J L, PLUSH B, LACHAPELLE P, et al.Coal mine dust lung disease in the modern era [J]. Respirology, 2017, 22 (4): 662-670.
- [3] 李德鸿.不要把尘肺病防治引入歧途[J].环境与职业医学, 2018, 35 (4): 283-285.
- [4] 中华人民共和国国家卫生健康委员会 .2019 年我国卫生健康事业发展统计公报 [J].中国实用乡村医生杂志, 2020, 27 (9): 1-11.
- [5] 张柏林,罗军,纪祥,等.平板探测器数字化 X 线摄影在尘肺病患者诊断中的应用价值 [J].中国药物经济学,2015 (7):181-183.
- [6] FRANZBLAU A, TEWATERNAUDE J, SEN A, et al. Comparison of digital and film chest radiography for detection and medical surveillance of silicosis in a setting with a high burden of tuberculosis [J]. Am J Ind Med, 2018, 61 (3): 229-238.
- [7] 李巍伟, 乔洪涛, 李辉, 等. 尘肺数字化 X 线摄影胸片质量控制中星卡的应用 [J]. 中华劳动卫生职业病杂志, 2018, 36 (3): 208-211.
- [8] 赵佳骏, 蒋兆强, 张敏, 等. 多窗口技术在尘肺病数字化 X 线摄影中的应用 [J]. 中华劳动卫生职业病杂志, 2017, 35 (7): 505-507.
- [9] 刘亚,胡茂能,徐婷婷,等.胸部数字摄影窗口技术在尘肺诊断中的应用价值[J].安徽医学,2018,39(9):1060-1063.

- [10] 王峥,刘瑞珍,韩书进.数字化 X 线摄影在尘肺病诊断中图像后处理参数的优化与评价[J].智慧健康,2019,5(26):6-8.
- [11] 余梁,周丽芬,徐婷婷,等.数字 X 线摄影联合双能量减影技术在尘肺病诊断中的应用价值 [J].安徽医学,2018,39 (9):1093-1095.
- [12] LEE W, LEE S, CHONG S, et al. Radiation dose reduction and improvement of image quality in digital chest radiography by new spatial noise reduction algorithm [J]. PLoS One, 2020, 15 (2): e0228609.
- [13] MOORE C S, WOOD T, AVERY G, et al. Use of a computer simulator to investigate optimized tube voltage for chest imaging of average patients with a digital radiography (DR) imaging system [J/OL] .Br J Radiol, 2019, 92 (1104) (2019–10–07) [2021–09–03] .https://doi.org/10.1259/bjr.20190470.
- [14] 中华人民共和国国家卫生和计划生育委员会.职业性尘肺病的诊断: GBZ 70—2015 [S]. 北京:中国标准出版社,2016.
- [15] 张敏,陈钧强.人工智能技术在尘肺病诊断中的应用研究进展 [J].环境与职业医学,2020,37(2):192-196.
- [16] RAJKOMAR A, LINGAM S, TAYLOR A G, et al.High-throughput classification of radiographs using deep convolutional neural networks [J] .J Digit Imaging, 2017, 30 (1): 95-101.
- [17] ANNARUMMA M, WITHEY S J, BAKEWELL R J, et al. Automated triaging of adult chest radiographs with deep artificial neural networks [J]. Radiology, 2019, 291 (1): 196-202.
- [18] WANG X, YU J, ZHU Q, et al. Potential of deep learning in assessing pneumoconiosis depicted on digital chest radiography [J].
 Occup Environ Med, 2020, 77 (9): 597-602.
- [19] 王峥,贺文.深度残差网络在尘肺病诊断中的应用初探 [J]. 中国工业医学,2019,32 (1):31-33.
- [20] OKUMURA E, KAWASHITA I, ISHIDA T.Computerized classification of pneumoconiosis on digital chest radiography artificial neural network with three stages [J]. J Digit Imaging, 2017, 30 (4): 413-426.
- [21] 罗海峰,翟荣存.傅里叶功率谱在尘肺阴影密集度判读中的应用[J].铜陵学院学报,2019,18(3):111-114.
- [22] 罗海峰,翟荣存.灰度共生矩阵在尘肺阴影密集度判读中的应用[J].计算机应用与软件,2015(2):171-177.
- [23] SINGH R, KALRA M K, NITIWARANGKUL C, et al. Deep learning in chest radiography: detection of findings and presence of change [J]. PLoS One, 2018, 13 (10): e0204155.
- [24] 王成霞,王宁宁,仇路,等. 尘肺病胸部 CT 与 DR 胸片影像 差异研究 [M].职业与健康,2021,37 (1):5-10.
- [25] CHA Y K, KIM J S, KIM Y, et al.Radiologic diagnosis of asbestosis in Korea [J] .Korean J Radiol, 2016, 17 (5): 674-683.
- [26] PREISSER A M, SCHLEMMER K, HEROLD R, et al.Relations between vital capacity, CO diffusion capacity and computed tomographic findings of former asbestos-exposed patients: across-sectional study [J/OL]. J Occup Med Toxicol, 2020, 15 [2021-09-03]. https://www.researchgate.net/publication/342607568_Relations_between_vital_capacity_CO_diffusion_capacity_and_computed_tomographic_findings_of_former_asbestos-exposed_patients_A_cross-sectional_study.DOI: 10.1186/s12995-020-00272-1.
- [27] MCBEAN R, NEWBIGIN K, DICKINSON S, et al. Radiological

- appearance of coal mine dust lung diseases in Australian workers [J] J Med Imaging Radiat Oncol, 2018, 62 (6): 794-797.
- [28] MASANORI A.Imaging diagnosis of classical and new pneumoconiosis: predominant reticular HRCT pattern [J/OL] .Insights Imaging, 2021, 12 [2021-09-03] .https://doi.org/10.1186/s13244-021-00966-v.
- [29] ŞENER M U, ŞIMŞEK C, ÖZKARAŞ, et al. Comparison of the International Classification of High-resolution Computed Tomography for occupational and environmental respiratory disease with the International Labor Organization International Classification of Radiographs of Pneumoconiosis [J]. Ind Health, 2019, 57 (4): 495-502.
- [30] 张柏林,雷益,纪祥,等.多排螺旋 CT 诊断职业性尘肺病的价值评价[J].职业卫生与应急救援,2019,37(3):218-221.
- [31] 兰军,杨滢,王德华,等.多层螺旋 CT 冠状面重建图像用于 尘肺诊断的标准研究与临床应用 [J].中外医学研究,2018,16 (15):63-64.
- [32] HERTH F J F, KIRBY M, SIEREN J, et al.The modern art of reading computed tomography images of the lungs: quantitative CT [J] .Respiration, 2018, 95 (1): 8-17.
- [33] HERNANDEZ-ROMIEU A C, LITTLE B P, BERNHEIM A, et al. Increasing number and volume of cavitary lesions on chest computed tomography are associated with prolonged time to culture conversion in pulmonary tuberculosis [J]. Open Forum Infect Dis, 2019, 6 (6): 1-13.
- [34] 宋辉 .HRCT 检查在尘肺合并肺结核中的诊断价值 [J] .河南医学研究, 2020, 29 (13): 2438-2440.
- [35] 王芝文.胸部 CT 诊断尘肺及其合并症的临床分析 [J].中国社区医师,2016,32(3):119-121.
- [36] MANNERS D, WONG P, MURRAY C, et al. Correlation of ultra-low dose chest CT findings with physiologic measures of asbestosis [J]. Eur Radiol, 2017, 27 (8): 3485-3490.
- [37] LUDES C, SCHAAL M, LABANI A, et al. Ultra-low dose chest CT: the end of chest radiograph? [J] . Presse Med, 2016, 45 (3): 291-301.
- [38] SCHAAL M, SEVERAC F, LABANI A, et al. Diagnostic performance of ultra-low-dose computed tomography for detecting asbestos -related pleuropulmonary diseases: prospective study in a screening setting [J] .PLoS One, 2016, 11 (12): e0168979.
- [39] 陈丽琨,晋子文,胡碧华,等. 低剂量多层螺旋 CT 最大密度投影在尘肺病中的应用 [J]. 辽宁医学杂志, 2018, 32 (1): 46-48.
- [40] WETZL M, MAY M S, WEINMANN D, et al.Potential for radiation dose reduction in dual-source computed tomography of the lung in the pediatric and adolescent population compared to digital radiography [J/OL] .Diagnostics (Basel), 2021, 11 (2) [2021–09–03] .https://doi.org/10.3390/diagnostics11020270.
- [41] WETZL M, MAY M S, WEINMANN D, et al. Dual-source computed tomography of the lung with spectral shaping and advanced iterative reconstruction: potential for maximum radiation dose reduction [J]. Pediatr Radiol, 2020, 50 (9): 1240-1248.

收稿日期: 2021-08-02 修回日期: 2021-09-03 本文编辑: 徐文璐