Mechanism of Yiqi Jiedu Prescriptions in Protection of Mitochondria in PC12 Cells Against Hypoxia Injury Based on Energy Metabolism
	    		
		   		
		   			
		   		
	    	
    	 
    	10.13422/j.cnki.syfjx.20220402
   		
        
        	
        		- VernacularTitle:基于能量代谢分析益气解毒方对缺氧损伤的PC12细胞线粒体保护作用的机制
 
        	
        	
        	
        		- Author:
	        		
		        		
		        		
			        		Yu-hao DAI
			        		
			        		
			        		
			        			1
			        			
			        		
			        		
			        		
			        		
			        		;
		        		
		        		
		        		
			        		Li-ming LIU
			        		
			        		
			        		
			        			1
			        			
			        		
			        		
			        		
			        		
			        		;
		        		
		        		
		        		
			        		Chen LIU
			        		
			        		
			        		
			        			1
			        			
			        		
			        		
			        		
			        		
			        		;
		        		
		        		
		        		
			        		Wen-jie WU
			        		
			        		
			        		
			        			2
			        			
			        		
			        		
			        		
			        		
			        		;
		        		
		        		
		        		
			        		Jian-ying SHEN
			        		
			        		
			        		
			        			1
			        			
			        		
			        		
			        		
			        		
			        		;
		        		
		        		
		        		
			        		Shao-jing LI
			        		
			        		
			        		
			        			1
			        			
			        		
			        		
			        		
			        		
			        		
		        		
		        		
		        		
		        		
		        			
			        		
			        		Author Information
			        		
		        		
		        		
			        		
			        		
			        			1. Institute of Chinese Materia Medica,China Academy of Chinese Medical Sciences,Beijing 100700,China
			        		
			        			2. Anhui University of Chinese Medicine,Hefei 230000,China
			        		
		        		
	        		
        		 
        	
        	
        	
        		- Publication Type:Journal Article
 
        	
        	
        		- Keywords:
        			
	        			
	        				
	        				
			        		
				        		Yiqi Jiedu prescriptions;
			        		
			        		
			        		
				        		combination;
			        		
			        		
			        		
				        		Seahorse;
			        		
			        		
			        		
				        		mitochondrial energy metabolism;
			        		
			        		
			        		
				        		hypoxia model
			        		
			        		
	        			
        			
        		
 
        	
            
            
            	- From:
	            		
	            			Chinese Journal of Experimental Traditional Medical Formulae
	            		
	            		 2022;28(4):34-41
	            	
            	
 
            
            
            	- CountryChina
 
            
            
            	- Language:Chinese
 
            
            
            	- 
		        	Abstract:
			       	
			       		
				        
				        	ObjectiveTo establish an evaluation method for mitochondrial energy metabolism with Seahorse analyzer and investigate the protective effect of Yiqi Jiedu prescriptions (YQ) on mitochondria in rat adrenal pheochromocytoma (PC12) cells against hypoxia injury. MethodThe PC12 cell injury model was induced in vitro using hypoxic chambers. Five groups were set up, ie, a control group, a model group (model), high- (25 µmol·L-1), medium- (5 µmol·L-1) and low-dose (1 µmol·L-1) YQ groups, and a positive drug trimetazidine (TMZ) group, with three replicate wells in each group. The experiment was repeated three times. The established method for energy metabolism analysis was used to assay the activity of mitochondrial complex in cells and screen the optimal dosing concentration. Subsequently, the YQ group and modified YQ groups were set up, and the aerobic respiration and glycolysis function were assayed by the Seahorse analyzer. According to the non-mitochondrial oxygen consumption, proton leakage, basal respiration, maximum respiration, ATP production, and potentially improved respiration, the effects of modified YQ groups on the aerobic respiration of mitochondria damaged by hypoxia were evaluated by principal component analysis (PCA) and variable importance in projection (VIP). The expression of cytochrome C, B-cell lymphoma-2 (Bcl-2), and Bcl-2-associated X protein (Bax) was detected by Western blot. ResultCompared with the groups of other concentrations, the optimal dosing concentration of carbonyl cyanide-4 (trifluoromethoxy)phenylhydrazone (FCCP) was 2 µmol·L-1. Compared with the model group, the medium-dose YQ group showed enhanced mitochondrial complex activity (P<0.05). The YQ groups were superior to the model group in improvement (P<0.01). The combination of ginsenoside and geniposide showed the optimal effect among the modified YQ groups (P<0.01). VIP analysis revealed that for the improvement of mitochondrial respiratory function, the contribution of geniposide in YQ was the greatest. Compared with the model group, the high-dose YQ group displayed reduced leakage of mitochondrial cytochrome C (P<0.01), decreased expression of Bax protein (P<0.01), and increased expression of Bcl-2 protein (P<0.05, P<0.01). ConclusionA cellular, high-throughput quantitative evaluation method for mitochondrial energy metabolism was established, which demonstrated that YQ could significantly improve the impaired mitochondrial energy metabolism in PC12 cells damaged by hypoxia, and the underlying mechanism might be related to the protection against mitochondrial apoptosis.