Effect of hydrogen-rich saline on mitochondrial biogenesis and dynamics in hippocampus of mice with sepsis-associated encephalopathy
	    		
		   		
		   			
		   		
	    	
    	 
    	10.3760/cma.j.cn131073.20211206.00318
   		
        
        	
        		- VernacularTitle:富氢液对脓毒症相关性脑病小鼠海马线粒体生物合成和动力学的影响
 
        	
        	
        	
        		- Author:
	        		
		        		
		        		
			        		Lina ZHENG
			        		
			        		
			        		
			        			1
			        			
			        		
			        		
			        		
			        		
			        		;
		        		
		        		
		        		
			        		Zhiwei WANG
			        		
			        		;
		        		
		        		
		        		
			        		Yaoqi WANG
			        		
			        		;
		        		
		        		
		        		
			        		Yonghao YU
			        		
			        		;
		        		
		        		
		        		
			        		Keliang XIE
			        		
			        		
		        		
		        		
		        		
		        		
		        			
			        		
			        		Author Information
			        		
		        		
		        		
			        		
			        		
			        			1. 山西省人民医院麻醉科,太原 030012
			        		
		        		
	        		
        		 
        	
        	
        	
        	
        		- Keywords:
        			
	        			
	        				
	        				
			        		
				        		Hydrogen;
			        		
			        		
			        		
				        		Sepsis-associated encephalopathy;
			        		
			        		
			        		
				        		Mitochondria
			        		
			        		
	        			
        			
        		
 
        	
            
            
            	- From:
	            		
	            			Chinese Journal of Anesthesiology
	            		
	            		 2022;42(3):333-337
	            	
            	
 
            
            
            	- CountryChina
 
            
            
            	- Language:Chinese
 
            
            
            	- 
		        	Abstract:
			       	
			       		
				        
				        	Objective:To evaluate the effect of hydrogen-rich saline (HRS) on mitochondrial biogenesis and dynamics in hippocampus of mice with sepsis-associated encephalopathy (SAE).Methods:One hundred and twenty-eight male C57BL/6J mice, aged 6-8 weeks, weighing 20-25 g, were divided into 4 groups ( n=32 each) using a random number table method: sham operation group (Sham group), sham operation plus HRS group (Sham+ HRS group), SAE group and SAE plus HRS group.Sepsis was developed by cecal ligation and puncture (CLP) in anesthetized mice.HRS 10 ml/kg was intraperitoneally injected at 1 and 6 h after CLP in Sham+ HRS and SAE+ HRS groups.Twenty mice were randomly selected from each group to record the 7-day survival after operation.The working memory of the mice was observed by Y-maze test on days 3, 5 and 7 after CLP.The hippocampal tissues were obtained at 24 h after CLP for determination of the content of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and high-mobility group box 1 protein (HMGB1) (by enzyme-linked immunosorbent assay), activities of superoxide dismutase (SOD) and catalase (CAT) (by spectrophotometry), and expression of peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α), nuclear respiratory factor 2 (NRF2), mitochondrial transcription factor A (Tfam), dynamin-related protein 1 (Drp1) and mitochondrial fusion protein mitofusin 2 (Mfn2) (by Western blot). Results:Compared with group Sham, the postoperative 7-day survival rate was significantly decreased, the time spent in novel arm was shortened, the contents of TNF-α, IL-6 and HMGB1 were increased, the activities of SOD and CAT were decreased, the expression of PGC-1α, NRF2 and Tfam was up-regulated, the expression of Drp1 was up-regulated, and the expression of Mfn2 was down-regulated in group SAE ( P<0.05). Compared with group SAE, the postoperative 7-day survival rate was significantly increased, the time spent in novel arm was prolonged, the contents of TNF-α, IL-6 and HMGB1 were decreased, the activities of SOD and CAT were increased, the expression of PGC-1α, NRF2 and Tfam was up-regulated, the expression of Drp1 was down-regulated, and the expression of Mfn2 was up-regulated in group SAE+ HRS ( P<0.05). Conclusions:The mechanism by which HRS alleviates SAE may be related to promotion of mitochondrial biogenesis, regulation of dynamics, and reduction of oxidative stress in hippocampus of mice.