Icariin improves renal interstitial fibrosis in a rat model of chronic renal failure by regulating mitochondrial dynamics.
10.19540/j.cnki.cjcmm.20211104.401
- Author:
Meng WANG
1
;
Ling-Chen WANG
1
;
Xiao-Xuan FENG
1
;
Yuan ZHOU
1
;
Chao-Yang YE
1
;
Chen WANG
1
Author Information
1. Department of Nephrology,Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine Shanghai 201203,China Traditional Chinese Medicine Institute of Kidney Disease,Shanghai University of Traditional Chinese Medicine Shanghai 201203,China Key Laboratory of Liver and Kidney Diseases,Ministry of Education,Shanghai University of Traditional Chinese Medicine Shanghai 201203,China Shanghai Key Laboratory of Traditional Chinese Clinical Medicine Shanghai 201203,China.
- Publication Type:Randomized Controlled Trial, Veterinary
- Keywords:
chronic renal failure;
icariin;
mitochondrial dynamics;
renal interstitial fibrosis
- MeSH:
Adenosine Triphosphate/pharmacology*;
Animals;
Female;
Fibrosis;
Flavonoids;
Humans;
Infarction/pathology*;
Kidney;
Kidney Failure, Chronic;
Male;
Mitochondrial Dynamics;
Rats;
Rats, Sprague-Dawley;
Renal Insufficiency, Chronic;
Transforming Growth Factor beta1/metabolism*
- From:
China Journal of Chinese Materia Medica
2022;47(8):2170-2177
- CountryChina
- Language:Chinese
-
Abstract:
This study aims to explore the effect of icariin(ICA) on mitochondrial dynamics in a rat model of chronic renal failure(CRF) and to investigate the molecular mechanism of ICA against renal interstitial fibrosis(RIF). CRF was induced in male Sprague-Dawley(SD) rats with 5/6(ablation and infarction, A/I) surgery(right kidney ablation and 2/3 infarction of the left kidney). Four weeks after surgery, the model rats were randomized into the following groups: 5/6(A/I) group, 5/6(A/I)+low-dose ICA group, and 5/6(A/I)+high-dose ICA group. Another 12 rats that received sham operation were randomly classified into 2 groups: sham group and sham+ICAH group. Eight weeks after treatment, the expression of collagen-Ⅰ(Col-Ⅰ), collagen-Ⅲ(Col-Ⅲ), mitochondrial dynamics-related proteins(p-Drp1 S616, p-Drp1 S637, Mfn1, Mfn2), and mitochondrial function-related proteins(TFAM, ATP6) in the remnant kidney tissues was detected by Western blot. The expression of α-smooth muscle actin(α-SMA) was examined by immunohistochemical(IHC) staining. The NRK-52 E cells, a rat proximal renal tubular epithelial cell line, were cultured in vitro and treated with ICA of different concentration. Cell viability was detected by CCK-8 assay. In NRK-52 E cells stimulated with 20 ng·mL~(-1) TGF-β1 for 24 h, the effect of ICA on fibronectin(Fn), connective tissue growth factor(CTGF), p-Drp1 S616, p-Drp1 S637, Mfn1, Mfn2, TFAM, and ATP6 was detected by Western blot, and the ATP content and the mitochondrial morphology were determined. The 20 ng·mL~(-1) TGF-β1-stimulated NRK-52 E cells were treated with or without 5 μmol·L~(-1) ICA+10 μmol·L~(-1) mitochondrial fusion promoter M1(MFP-M1) for 24 h and the expression of fibrosis markers Fn and CTGF was detected by Western blot. Western blot result showed that the levels of Col-Ⅰ, Col-Ⅲ, and p-Drp1 S616 were increased and the levels of p-Drp1 S637, Mfn1, Mfn2, TFAM, and ATP6 were decreased in 5/6(A/I) group compared with those in the sham group. The levels of Col-Ⅰ, Col-Ⅲ, and p-Drp1 S616 were significantly lower and the levels of p-Drp1 S637, Mfn1, Mfn2, TFAM, and ATP6 were significantly higher in ICA groups than that in 5/6(A/I) group. IHC staining demonstrated that for the expression of α-SMA in the renal interstitium was higher in the 5/6(A/I) group than in the sham group and that the expression in the ICA groups was significantly lower than that in the 5/6(A/I) group. Furthermore, the improvement in the fibrosis, mitochondrial dynamics, and mitochondrial function were particularly prominent in rats receiving the high dose of ICA. The in vitro experiment revealed that ICA dose-dependently inhibited the increase of Fn, CTGF, and p-Drp1 S616, increased p-Drp1 S637, Mfn1, Mfn2, TFAM, and ATP6, elevated ATP content, and improved mitochondrial morphology of NRK-52 E cells stimulated by TGF-β1. ICA combined with MFP-M1 further down-regulated the expression of Fn and CTGF in NRK-52 E cells stimulated by TGF-β1 compared with ICA alone. In conclusion, ICA attenuated RIF of CRF by improving mitochondrial dynamics.