Curcumin attenuates renal ischemia reperfusion injury via JNK pathway with the involvement of p300/CBP-mediated histone acetylation
	    		
		   		
		   			
		   		
	    	
    	 
    	10.4196/kjpp.2021.25.5.413
   		
        
        	
        	
        	
        		- Author:
	        		
		        		
		        		
			        		Lu YANG
			        		
			        		
			        		
			        			1
			        			
			        		
			        		
			        		
			        		
			        		;
		        		
		        		
		        		
			        		Xiaoxiang CHEN
			        		
			        		;
		        		
		        		
		        		
			        		Zirong BI
			        		
			        		;
		        		
		        		
		        		
			        		Jun LIAO
			        		
			        		;
		        		
		        		
		        		
			        		Weian ZHAO
			        		
			        		;
		        		
		        		
		        		
			        		Wenqi HUANG
			        		
			        		
		        		
		        		
		        		
		        		
		        			
			        		
			        		Author Information
			        		
		        		
		        		
			        		
			        		
			        			1. Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, P.R. China.
			        		
		        		
	        		
        		 
        	
        	
        	
        		- Publication Type:Original Article
 
        	
        	
            
            
            	- From:The Korean Journal of Physiology and Pharmacology
	            		
	            		 2021;25(5):413-423
	            	
            	
 
            
            
            	- CountryRepublic of Korea
 
            
            
            	- Language:English
 
            
            
            	- 
		        	Abstract:
			       	
			       		
				        
				        	Apoptosis is proved responsible for renal damage during ischemia/reperfusion. The regulation for renal apoptosis induced by ischemia/reperfusion injury (IRI) has still been unclearly characterized to date. In the present study, we investigated the regulation of histone acetylation on IRI-induced renal apoptosis and the molecular mechanisms in rats with the application of curcumin possessing a variety of biological activities involving inhibition of apoptosis. Sprague–Dawley rats were randomized into four experimental groups (SHAM, IRI, curcumin, SP600125). Results showed that curcumin significantly decreased renal apoptosis and caspase-3/-9 expression and enhanced renal function in IRI rats. Treatment with curcumin in IRI rats also led to the decrease in expression of p300/cyclic AMP response element-binding protein (CBP) and activity of histone acetyltransferases (HATs). Reduced histone H3 lysine 9 (H3K9) acetylation was found near the promoter region of caspase-3/-9 after curcumin treatment. In a similar way, SP600125, an inhibitor of c-Jun N-terminal kinase (JNK), also attenuated renal apoptosis and enhanced renal function in IRI rats. In addition, SP600125 suppressed the binding level of p300/CBP and H3K9 acetylation near the promoter region of caspase-3/-9, and curcumin could inhibit JNK phosphorylation like SP600125. These results indicate that curcumin could attenuate renal IRI via JNK/p300/CBP-mediated anti-apoptosis signaling.