Reversal effect of peptide-modified chitosan tetramethylpyrazine nanoparticles on multidrug resistance in tumor cells.
10.19540/j.cnki.cjcmm.20200820.301
- Author:
Xiang-Yang LIU
1
;
Qing FAN
1
;
Chen-Yang ZHAO
1
;
Ming-Kun SHAO
1
;
Ma HUI
1
;
Li-Chun CHEN
1
;
A REN BAO LI GAO
1
;
Yu ZHEN-LONG
2
Author Information
1. Department of Pharmaceutics, the Second Affiliated Hospital of Dalian Medical University Dalian 116027, China.
2. Dalian Medical University Dalian 116044, China.
- Publication Type:Journal Article
- Keywords:
epidermal growth factor receptor;
nanoparticles;
reverse multidrug resistance;
tetramethylprazine;
tumor cells
- MeSH:
Breast Neoplasms;
Chitosan;
Doxorubicin;
Drug Resistance, Multiple;
Drug Resistance, Neoplasm;
Humans;
Nanoparticles;
Peptides;
Pyrazines
- From:
China Journal of Chinese Materia Medica
2020;45(22):5487-5494
- CountryChina
- Language:Chinese
-
Abstract:
To prepare peptide-modified chitosan tetramethylprazine nanoparticles(FGF-CS-TMP-NPS) and investigate its reversal effect on multidrug resistance in tumor cells. The pEGF-CS-TMP-NPs were prepared by ion crosslinking method, and their physicochemical properties were investigated. Western blot was used to detect the expression levels of epidermal growth factor receptor(EGFR)(MCF-7, MCF-7/ADR, K562 and K562/ADR) and drug-resistant related protein P-gp. MCF-7/ADR and K562/ADR were selected as cell models. The cytotoxicity of pEGF-CS-TMP-NPs, the multiple of cell resistance to adriamycin, the reversal resistance index of pEGF-CS-TMP-NPs to doxorubicin and the sensitization of pEGF-CS-TMP-NPs to doxorubicin were detected by MTT assay. After MCF-7/ADR and K562/ADR were treated with pEGF-CS-TMP-NPs, the expression changes of P-gp were detected by Western blot. The encapsulation efficiency and drug loading of pEGF-CS-TMP-NPs were 37.66%± 0.53% and 3.25%± 0.34% respectively in HPLC. The nanoparticles showed an average particle size of(150.50±9.3) nm, polymer dispersity index of(0.059±0.007) and Zeta potential of(19.30±2.02) mV as detected by laser particle size analyzer. The nanoparticles were spherical and well dispersed under transmission electron microscope. Western blot results showed that EGFR was positively expressed in MCF-7 and MCF-7/ADR cells, while negatively expressed in K562 and K562/ADR cells. P-gp was highly expressed in MCF-7/ADR and K562/ADR, while negatively expressed in MCF-7 and K562. pEGF-CS-TMP-NPs had a weak effect on MCF-7/ADR and K562/ADR. The adriamycin resistance of MCF-7/ADR cells was 108.36 times, and that of K562/ADR cells was more than 100 times. When IC_(85) of pEGF-CS-TMP-NPs was used as the administration concentration, the reversion index of MCF-7/ADR and K562/ADR cells was 3.68 and 1.87, respectively. pEGF-CS-TMP-NPs could enhance the sensitivity of adriamycin to MCF-7/ADR cells in a positive correlation with the concentration, and the sensitivity was significantly higher than that of K562/ADR cells. Western blot results showed that the expression level of P-gp in MCF-7/ADR cells decreased significantly after treatment with pEGF-CS-TMP-NPs, while the expression level of P-gp in K562/ADR cells did not change significantly. Experimental results show that pEGF-CS-TMP-NPs have an active targeting effect on MCF-7/ADR cells with high EGFR expression, and can effectively reverse the multidrug resistance of MCF-7/ADR cells. Active targeting effect is related to the peptides modification of nanoparticles, and the mechanism of reversing tumor MDR may be achieved by down-regulating the expression level of P-gp.