15-Deoxy-Δ12,14 -prostaglandin J2 Induces Epithelial-tomesenchymal Transition in Human Breast Cancer Cells and Promotes Fibroblast Activation
	    		
		   		
		   			
		   		
	    	
    	 
    	10.15430/JCP.2020.25.3.152
   		
        
        	
        	
        	
        		- Author:
	        		
		        		
		        		
			        		Jeehye CHOI 1
			        		
			        		
			        		
			        			1
			        			
			        		
			        		
			        		
			        		
			        		;
		        		
		        		
		        		
			        		Jin-Young SUH
			        		
			        		;
		        		
		        		
		        		
			        		Do-Hee KIM
			        		
			        		;
		        		
		        		
		        		
			        		Hye-Kyung NA
			        		
			        		;
		        		
		        		
		        		
			        		Young-Joon SURH
			        		
			        		
		        		
		        		
		        		
		        		
		        			
			        		
			        		Author Information
			        		
		        		
		        		
			        		
			        		
			        			1. Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, Seoul National University,Seoul,, Korea
			        		
		        		
	        		
        		 
        	
        	
        	
        		- Publication Type:Original Article
 
        	
        	
            
            
            	- From:Journal of Cancer Prevention
	            		
	            		 2020;25(3):152-163
	            	
            	
 
            
            
            	- CountryRepublic of Korea
 
            
            
            	- Language:English
 
            
            
            	- 
		        	Abstract:
			       	
			       		
				        
				        	 In inflammation-associated carcinogenesis, COX-2 is markedly overexpressed, resulting in accumulation of various prostaglandins. 15-deoxy-Δ 12,14 -prostaglandin J 2  (15d-PGJ2  ) is one of the terminal products of COX-2-catalyzed arachidonic acid catabolism with oncogenic potential. Epithelial-to-mesenchymal transition (EMT) is a process by which epithelial cells lose their polarity and adhesiveness, and thereby gain migratory and invasive properties. Treatment of human breast cancer MCF-7 cells with 15d-PGJ2 induced EMT as evidenced by increased expression of Snail and ZEB1, with concurrent down-regulation of E-cadherin. Nuclear extract from 15d-PGJ2  -treated MCF-7 cells showed the binding of Snail and ZEB1 to E-box sequences present in the E-cadherin promoter, which accounts for repression of E-catherin expression. Unlike 15d-PGJ2  , its non-electrophilic analogue 9,10-dihydro-15d-PGJ2  failed to induce EMT, suggesting that the α,β-unsaturated carbonyl group located in the cyclopentenone ring of 15d-PGJ2  is essential for its oncogenic function. Notably, the mRNA level of interleukin-8 (IL-8)/CXCL8 was highly elevated in 15d-PGJ 2  -stimulated MCF-7 cells. 15d-PGJ2  -induced up-regulation of IL-8/CXCL8 expression was abrogated by silencing of Snail short interfering RNA. Treatment of normal fibroblast with conditioned medium obtained from cultures of MCF-7 cells undergoingEMT induced the expression of activated fibroblast marker proteins, α-smooth muscle actin and fibroblasts activation protein-α.Co-culture of normal fibroblasts with 15d-PGJ2  -stimulated MCF-7 cells also activated normal fibroblast cells to cancer associated fibroblasts. Taken together, above findings suggest that 15d-PGJ2  induces EMT through up-regulation of Snail expression and subsequent production of CXCL8 as a putative activator of fibroblasts, which may contribute to tumor-stroma interaction in inflammatory breast cancer microenvironment.