Nanoparticles with high payloads of pipemidic acid, a poorly soluble crystalline drug: drug-initiated polymerization and self-assembly approach.
	    		
		   		
		   			
		   		
	    	
    	 
    	10.1016/j.apsb.2018.03.008
   		
        
        	
        	
        	
        		- Author:
	        		
		        		
		        		
			        		Elisabetta PANCANI
			        		
			        		
			        		
			        			1
			        			
			        		
			        		
			        		
			        		
			        		;
		        		
		        		
		        		
			        		Mario MENENDEZ-MIRANDA
			        		
			        		
			        		
			        			1
			        			
			        		
			        		
			        		
			        		
			        		;
		        		
		        		
		        		
			        		Alexandra PASTOR
			        		
			        		
			        		
			        			1
			        			
			        		
			        		
			        		
			        		
			        		;
		        		
		        		
		        		
			        		François BRISSET
			        		
			        		
			        		
			        			2
			        			
			        		
			        		
			        		
			        		
			        		;
		        		
		        		
		        		
			        		Marie-Françoise BERNET-CAMARD
			        		
			        		
			        		
			        			3
			        			
			        		
			        		
			        		
			        		
			        		;
		        		
		        		
		        		
			        		Didier DESMAËLE
			        		
			        		
			        		
			        			4
			        			
			        		
			        		
			        		
			        		
			        		;
		        		
		        		
		        		
			        		Ruxandra GREF
			        		
			        		
			        		
			        			1
			        			
			        		
			        		
			        		
			        		
			        		
		        		
		        		
		        		
		        		
		        			
			        		
			        		Author Information
			        		
		        		
		        		
			        		
			        		
			        			1. Institut de Sciences Moléculaires d'Orsay (ISMO), Univ. of Paris-Sud, Université Paris-Saclay, Orsay 91405, France.
			        		
			        			2. Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Univ. of Paris-Sud, Université Paris-Saclay, Orsay 91405, France.
			        		
			        			3. EA4043 "Unité Bactéries Pathogènes et Santé" (UBaPS), Univ. of Paris-Sud, Université Paris-Saclay, Châtenay-Malabry 92290, France.
			        		
			        			4. Institut Galien, UMR8612 Univ. of Paris-Sud, Université Paris-Saclay, Châtenay-Malabry 92290, France.
			        		
		        		
	        		
        		 
        	
        	
        	
        		- Publication Type:Journal Article
 
        	
        	
        		- Keywords:
        			
	        			
	        				
	        				
			        		
				        		Antibiotic;
			        		
			        		
			        		
				        		Crystalline drug;
			        		
			        		
			        		
				        		Drug-initiated   polymerization;
			        		
			        		
			        		
				        		Nanoparticle;
			        		
			        		
			        		
				        		Nanoprecipitation;
			        		
			        		
			        		
				        		Pipemidic acid
			        		
			        		
	        			
        			
        		
 
        	
            
            
            	- From:
	            		
	            			Acta Pharmaceutica Sinica B
	            		
	            		 2018;8(3):420-431
	            	
            	
 
            
            
            	- CountryChina
 
            
            
            	- Language:English
 
            
            
            	- 
		        	Abstract:
			       	
			       		
				        
				        	Nowadays, biodegradable polymers such as poly(lactic acid) (PLA), poly(D,L-lactic--glycolic acid) (PLGA) and poly(-caprolactone) (PCL) remain the most common biomaterials to produce drug-loaded nanoparticles (NPs). Pipemidic acid (PIP) is a poorly soluble antibiotic with a strong tendency to crystallize. PIP incorporation in PLA/PLGA NPs was challenging because of PIP crystals formation and burst release. As PIP had a poor affinity for the NPs, an alternative approach to encapsulation was used, consisting in coupling PIP to PCL. Thus, a PCL-PIP conjugate was successfully synthesized by an original drug-initiated polymerization in a single step without the need of catalyst. PCL-PIP was characterized by NMR, IR, SEC and mass spectrometry. PCL-PIP was used to prepare self-assembled NPs with PIP contents as high as 27% (/). The NPs were characterized by microscopy, DLS, NTA and TRPS. This study paves the way towards the production of NPs with high antibiotic payloads by drug-initiated polymerization. Further studies will deal with the synthesis of novel polymer-PIP conjugates with ester bonds between the drug and PCL. PIP can be considered as a model drug and the strategy developed here could be extended to other challenging antibiotics or anticancer drugs and employed to efficiently incorporate them in NPs.