Expression, purification and characterization of N-glycosylation mutant human IFN-λ1 in Pichia pastoris.
	    		
		   		
		   			
		   		
	    	
    	- Author:
	        		
		        		
		        		
			        		Xiwu HUI
			        		
			        		
			        		
			        			1
			        			
			        		
			        		
			        		
			        		
			        		;
		        		
		        		
		        		
			        		Hong CHEN
			        		
			        		
			        		
			        			1
			        			
			        		
			        		
			        		
			        		
			        		;
		        		
		        		
		        		
			        		Bingren HUANG
			        		
			        		
			        		
			        			1
			        			
			        		
			        		
			        		
			        		
			        		
		        		
		        		
		        		
			        		
			        		Author Information
			        		
 - Publication Type:Journal Article
 - Keywords: N-glycosylation; Pichia pastoris; human IFN-λ1
 - From: Chinese Journal of Biotechnology 2018;34(4):613-624
 - CountryChina
 - Language:Chinese
 - Abstract: IFN-λ1 is a member of a new family of interferons called type Ⅲ IFNs with similar functions to type ⅠIFNs. Previously we obtained recombinant soluble human rhIFN-λ1 from Pichia pastoris. However, the hyper-glycosylation from P. pastoris brings immunogenicity and low purification recovery rate. To overcome this disadvantage, in this study, we constructed an rhIFN-λ1 mutant (rhIFN-λ1-Nm) devoid of the potential N-glycosylation sites by site-directed mutagenesis. rhIFN-λ1-Nm was successfully expressed and secreted extracellularly in P. pastoris (GS115) using methanol inducible AOX1 promoter with α-mating factor signal sequence. rhIFN-λ1-Nm was purified and characterized. There was no significant difference between rhIFN-λ1-Nm and rhIFN-λ1 in structure and bioactivity. The molecular weight was low after N-glycosylation mutation whereas the glycosylation was much lower. The mutational rhIFN-λ1 (rhIFN-λ1-Nm) could legitimately be developed as substitutes for rhIFN-λ1, and thus it may be developed into a more promising therapeutic reagent in the future.
 
            