Use of rats mesenchymal stem cells modified with mHCN2 gene to create biologic pacemakers.
	    		
		   		
	    	
    	
    	
   		
        
        	
        	
        	
        		- Author:
	        		
		        		
		        		
			        		Jin, MA
			        		
			        		;
		        		
		        		
		        		
			        		Cuntai, ZHANG
			        		
			        		;
		        		
		        		
		        		
			        		Shen, HUANG
			        		
			        		;
		        		
		        		
		        		
			        		Guoqiang, WANG
			        		
			        		;
		        		
		        		
		        		
			        		Xiaoqing, QUAN
			        		
			        		
		        		
		        		
		        		
		        		
		        		
			        		
			        		
		        		
	        		
        		 
        	
        	
        	
        		- Publication Type:Journal Article
 
        	
        	
            
            
            	- From:
	            		
	            			Journal of Huazhong University of Science and Technology (Medical Sciences)
	            		
	            		 2010;30(4):447-52
	            	
            	
 
            
            
            	- CountryChina
 
            
            
            	- Language:English
 
            
            
            	- 
		        	Abstract:
			       	
			       		
				        
				        	The possibility of rats mesenchymal stem cells (MSCs) modified with murine hyperpolarization-activated cyclic nucleotide-gated 2 (mHCN2) gene as biological pacemakers in vitro was studied. The cultured MSCs were transfected with pIRES2-EGFP plasmid carrying enhanced green fluorescent protein (EGFP) gene and mHCN2 gene. The identification using restriction enzyme and sequencing indicated that the mHCN2 gene was inserted to the pIRES2-EGFP. Green fluorescence could be seen in MSCs after transfection for 24-48 h. The expression of mHCN2 mRNA and protein in the transfected cells was detected by RT-PCR and Western blot, and the quantity of mHCN2 mRNA and protein expression in transfected MSCs was 5.31 times and 7.55 times higher than that of the non-transfected MSCs respectively (P<0.05, P<0.05). I(HCN2) was recorded by whole-cell patch clamp method. The effect of Cs(+), a specific blocker of pacemaker current, was measured after perfusion by patch clamp. The results of inward current indicated that there was no inward current recording in non-transfected MSCs and a large voltage-dependent inward and Cs(+)-sensitive current activated on hyperpolarizations presented in the transfected MSCs. I(HCN2) was fully activated around -140 mV with an activation threshold of -60 mV. The midpoint (V(50)) was -95.1+/-0.9 mV (n=9). The study demonstrates that mHCN2 mRNA and protein can be expressed and the currents of HCN2 channels can be detected in genetically modified MSCs. The gene-modified MSCs present a novel method for pacemaker genes into the heart or other electrical syncytia.