Clinical application of proton magnetic resonance spectroscopy in children with idiopathic epilepsy.
- Author:
	        		
		        		
		        		
			        		Xiao-Li SHAO
			        		
			        		
			        		
			        			1
			        			
			        		
			        		
			        		
			        		
			        		;
		        		
		        		
		        		
			        		Zhong-Shu ZHOU
			        		
			        		;
		        		
		        		
		        		
			        		Wen HONG
			        		
			        		
		        		
		        		
		        		
			        		
			        		Author Information
			        		
 - Publication Type:Journal Article
 - MeSH: Aspartic Acid; analogs & derivatives; analysis; Child; Child, Preschool; Choline; analysis; Epilepsy; diagnosis; metabolism; Female; Humans; Magnetic Resonance Imaging; Magnetic Resonance Spectroscopy; methods; Male; Phosphocreatine; analysis; Protons
 - From: Chinese Journal of Contemporary Pediatrics 2010;12(6):425-428
 - CountryChina
 - Language:Chinese
 - 
		        	Abstract:
			       	
			       		
				        
				        	
OBJECTIVEThis study examined the biochemical metabolism by proton magnetic resonance spectroscopy ('H-MRS) in order to explore the value of 'H-MRS in idiopathic epilepsy in children.
METHODSThirty-three children with idiopathic epilepsy (14 cases with history of febrile seizures and 19 cases without) and six normal controls experienced MRI of the skull and brain and single-voxel 'H-MRS examinations of the hippocampi-temporal lobe. The signal intensities of N-acetylaspartate (NAA), eatine+phosphocreatine (Cr), choline-containing compounds (Cho) and lactate (Lac) and the ratios of NAA/ (Cho+Cr) and Lac/Cr were compared between the patients and normal controls.
RESULTSMRI examination showed that only one child with epilepsy had myelin dysplasia. 'H-MRS examination showed that the ratio of NAA/ (Cho+Cr) in the epilepsy group was lower than that in the control group (0.64+/-0.07 vs 0.73+/-0.05; P<0.01). The epileptic children with history of febrile seizures had a more decreased ratio of NAA/ (Cho+Cr) compared with those without the history (0.61+/-0.07 vs 0.66+/-0.06; P<0.05). There were no significant differences in the ratio of Lac/Cr between the epilepsy and the control groups.
CONCLUSIONS'H-MRS may provide early information on brain injury sensitively and non-invasively in children with epilepsy. It may be used for diagnosis and prognosis evaluation of epilepsy.
 
            