Expression of Kir2.1, SCN5a and SCN1b channel genes in mouse cardiomyocytes with various electric properties: patch clamp combined with single cell RT-PCR study.
	    		
		   		
	    	
    	
    	
   		
        
        	
        	
        	
        		- Author:
	        		
		        		
		        		
			        		Hong-Yan LUO
			        		
			        		
			        		
			        			1
			        			
			        		
			        		
			        		
			        		
			        		;
		        		
		        		
		        		
			        		Hua-Min LIANG
			        		
			        		;
		        		
		        		
		        		
			        		Xin-Wu HU
			        		
			        		;
		        		
		        		
		        		
			        		Ming TANG
			        		
			        		
		        		
		        		
		        		
		        		
		        			
			        		
			        		Author Information
			        		
		        		
		        		
			        		
			        		
			        			1. Department of Physiology, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China.
			        		
		        		
	        		
        		 
        	
        	
        	
        		- Publication Type:Journal Article
 
        	
        	
            
            	- MeSH:
            	
	        			
	        				
	        				
				        		
					        		Animals;
				        		
			        		
				        		
					        		Electrophysiological Phenomena;
				        		
			        		
				        		
					        		Female;
				        		
			        		
				        		
					        		Fetus;
				        		
			        		
				        		
					        		Male;
				        		
			        		
				        		
					        		Mice;
				        		
			        		
				        		
					        		Myocytes, Cardiac;
				        		
			        		
				        		
					        		metabolism;
				        		
			        		
				        		
					        		physiology;
				        		
			        		
				        		
					        		NAV1.5 Voltage-Gated Sodium Channel;
				        		
			        		
				        		
					        		genetics;
				        		
			        		
				        		
					        		metabolism;
				        		
			        		
				        		
					        		Patch-Clamp Techniques;
				        		
			        		
				        		
					        		Potassium Channels, Inwardly Rectifying;
				        		
			        		
				        		
					        		genetics;
				        		
			        		
				        		
					        		metabolism;
				        		
			        		
				        		
					        		Real-Time Polymerase Chain Reaction;
				        		
			        		
				        		
					        		Voltage-Gated Sodium Channel beta-1 Subunit;
				        		
			        		
				        		
					        		genetics;
				        		
			        		
				        		
					        		metabolism
				        		
			        		
	        			
	        			
            	
            	
 
            
            
            	- From:
	            		
	            			Acta Physiologica Sinica
	            		
	            		 2012;64(1):82-86
	            	
            	
 
            
            
            	- CountryChina
 
            
            
            	- Language:Chinese
 
            
            
            	- 
		        	Abstract:
			       	
			       		
				        
				        	This study is to explore a new method of investigating molecular basis for electrophysiological properties of early fetal cardiomyocytes. Single embryonic cardiomyocytes of mouse early developmental heart (E10.5) were obtained by a collagenase B digestion approach. After recording spontaneous action potential using whole cell patch clamp technique, the single cell was picked by a glass micropipette, followed by a standard RT-PCR to explore the expression levels of several ion channel genes. Three phenotypes of cardiomyocytes were demonstrated with distinct properties: ventricular-like, atrial-like, and pacemaker-like action potentials. Ventricular-like and atrial-like cells were characterized with much negative maximum diastolic potential (MDP) and a higher V(max) (maximum velocity of depolarization) compared to pacemaker-like cells. MDP of ventricular-like cells was the most negative. In parallel, stronger expression of SCN5a, SCN1b and Kir2.1 were observed in ventricular-like and atrial-like cells compared to that of pacemaker-like cells, where Kir2.1 in ventricular-like cells was the most abundant. Cardiomyocytes with distinct electrophysiological properties had distinct gene expression pattern. Single cell RT-PCR combined with patch clamp technique could serve as a precise detector to analyze the molecular basis of the special electrophysiological characteristics of cardiomyocytes.