Bone protection effects of a novel Chinese herbal formula, taikong yangxin prescription, in hindlimb unloaded rats against bone deterioration.
	    		
		   		
		   			
		   		
	    	
    	- Author:
	        		
		        		
		        		
			        		Chun-hay KO
			        		
			        		
			        		
			        			1
			        			
			        		
			        		
			        		
			        		
			        		;
		        		
		        		
		        		
			        		Wing-sum SIU
			        		
			        		
			        		
			        			1
			        			
			        		
			        		
			        		
			        		
			        		;
		        		
		        		
		        		
			        		Chung-lap CHAN
			        		
			        		
			        		
			        			1
			        			
			        		
			        		
			        		
			        		
			        		;
		        		
		        		
		        		
			        		Chi-man KOON
			        		
			        		
			        		
			        			1
			        			
			        		
			        		
			        		
			        		
			        		;
		        		
		        		
		        		
			        		Kwok-pui FUNG
			        		
			        		
			        		
			        			1
			        			
			        		
			        		
			        		
			        		
			        		;
		        		
		        		
		        		
			        		Yong-zhi LI
			        		
			        		
			        		
			        			2
			        			
			        		
			        		
			        		
			        		
			        		;
		        		
		        		
		        		
			        		Ying-hui LI
			        		
			        		
			        		
			        			2
			        			
			        		
			        		
			        		
			        		
			        		;
		        		
		        		
		        		
			        		Ping-chung LEUNG
			        		
			        		
			        		
			        			3
			        			
			        		
			        		
			        		
			        		
			        		
		        		
		        		
		        		
			        		
			        		Author Information
			        		
 - Publication Type:Journal Article
 - Keywords: Chinese herbal medicine; micro-computerized tomography; osteoporosis peripheral quantitative computed tomography; tail-suspension rat model
 - MeSH: Animals; Biomechanical Phenomena; drug effects; Bone Density; drug effects; Bone and Bones; diagnostic imaging; drug effects; Drugs, Chinese Herbal; administration & dosage; pharmacology; Femur; Male; Rats; Rats, Sprague-Dawley; Tibia; Tomography Scanners, X-Ray Computed; Weightlessness; X-Ray Microtomography
 - From: Chinese journal of integrative medicine 2015;21(10):759-764
 - CountryChina
 - Language:English
 - 
		        	Abstract:
			       	
			       		
				        
				        	
OBJECTIVETo investigate the protective effects of a Chinese herbal formula, taikong yangxin prescription (TKYXP) against bone deterioration in a hindlimb unloaded (tail-suspension) rat model.
METHODSThirty-two male Sprague-Dawley rats were divided into 4 groups: tail-suspension group fed with 2.5 g•kg(-1)•day(-1) of TKYXP extract (high dose), tail-suspension group fed with 1.25 g•kg(-1)•day(-1) (low dose), tail-suspended group treated with water placebo (placebo control group) and non tail-suspended group. The effects of TKYXP on bone were assessed using peripheral quantitative computed tomography (pQCT), microcomputerized tomography (micro-CT) and three-point bending biomechanical test on the femur in vivo.
RESULTSTKYXP had a significant protective effect against bone loss induced by tail-suspension on day 28, as shown in the reduction in bone mineral density (BMD) loss, preservation of bone micro-architecture and biomechanical strength. The administration ofhigh dose TKYXP could significantly reduce the total BMD loss by 4.8% and 8.0% at the femur and tibia regions, respectively, compared with the placebo control group (P<0.01) on day 28. Its bone protective effect on the femur was further substantiated by the increases of the trabecular BMD (by 6.6%), bone volume fraction (by 20.9%), trabecular number (by 9.5%) and thickness (by 11.9%) as compared with the placebo control group.
CONCLUSIONTKYXP may protect the bone under weightless influence from gradual structural deterioration in the tail-suspension model.
 
            