Mechanism of Danshenol A in Alleviating Myocardial Ischemia-reperfusion Injury-induced Ferroptosis of Cardiomyocytes
10.13422/j.cnki.syfjx.20250505
- VernacularTitle:丹参醇A减轻心肌缺血再灌注损伤诱导的心肌细胞铁死亡的作用机制
- Author:
Lei ZHANG
1
;
Jiangang LIU
1
;
Peili WANG
1
;
Tao GENG
2
;
Die LIN
2
Author Information
1. Xiyuan Hospital of China Academy of Chinese Medical Sciences,Beijing 100091,China
2. Guang'anmen Hospital of China Academy of Chinese Medical Sciences,Beijing 100053,China
- Publication Type:Journal Article
- Keywords:
acute myocardial infarction;
danshenol A;
myocardial ischemia-reperfusion injury;
ferroptosis
- From:
Chinese Journal of Experimental Traditional Medical Formulae
2025;31(11):135-144
- CountryChina
- Language:Chinese
-
Abstract:
ObjectiveTo investigate the mechanism of danshenol A (DA) pretreatment in alleviating myocardial ischemia-reperfusion injury (MIRI) by regulating cardiomyocyte ferroptosis by in vivo and in vitro experiments. MethodsA MIRI model was established in SD rats, and an in vitro oxygen-glucose deprivation/reoxygenation (OGD/R) model was constructed with H9C2 cells. Both models were treated with DA. H9C2 cells were allocated into blank, model (OGD/R), DA, ferroptosis inducer (erastin), and ferroptosis inhibitor (Fer-1) groups. Cell viability was assessed by the methyl thiazolyl tetrazolium (MTT) assay. Biochemical assays were performed to measure the superoxide dismutase (SOD), malondialdehyde (MDA), glutathione (GSH), and ferrous ion (Fe2+) levels. Dihydroethidium (DHE) fluorescence assay was adopted to quantify the reactive oxygen species (ROS) level. Real-time PCR and Western blot were employed to quantify the mRNA and protein levels, respectively, of prostaglandin-endoperoxide synthase 2 (PTGS2), glutathione peroxidase 4 (GPX4), ferritin heavy chain 1 (FTH1), and acyl-coA synthetase long-chain family 4 (ACSL4). Sixty SPF-grade healthy male SD rats were randomly assigned to control, model (MIRI), DA, erastin, and Fer-1 groups. Enzyme-linked immunosorbent assay (ELISA) was adopted to measure the serum levels of cardiac troponin I (cTnI), lactate dehydrogenase (LDH), and creatine kinase (CK). Histopathological changes in the myocardial tissue were observed by hematoxylin-eosin (HE) staining. Cardiomyocyte apoptosis was detected by terminal deoxynucleotidyl transferase-mediated nick end labeling (TUNEL). The effect of DA on cardiomyocyte ferroptosis were observed and analyzed by in vivo and in vitro experiments. ResultsIn vitro experiment: compared with the blank group, the OGD/R model group showed reduced cell viability, elevated levels of ROS, MDA, and Fe2+, up-regulated mRNA and protein levels of ACSL4, lowered levels of SOD and GSH, and down-regulated mRNA and protein levels of PTGS2, GPX4, and FTH1 (P<0.05,P<0.01). The DA and Fer-1 groups exhibited consistent trends: cell viability, SOD and GSH levels, and the mRNA and protein levels of PTGS2, GPX4, and FTH1 were significantly restored, while the ROS, MDA, and Fe2+ levels, and the mRNA and protein levels of ACSL4 were reduced (P<0.05,P<0.01). In vivo experiment: Compared with the control group, the MIRI model group showed elevated serum levels of cTnI, LDH, and CK, increased cardiomyocyte apoptosis rate, risen levels of ROS, MDA, and Fe2+, and up-regulated mRNA and protein levels of ACSL4. However, both DA and Fer-1 groups exhibited reductions in the indicators above (P<0.05). Compared with the control group, the MIRI model group demonstrated reduced levels of SOD and GSH and down-regulated mRNA and protein levels of PTGS2, GPX4, and FTH1 (P<0.05). In contrast, both DA and Fer-1 upregulated these indicators (P<0.05), effectively reversing the trends in the model group. In addition, the MIRI model group showed swelling of cardiomyocytes, disarrangement of cardiac muscle fibers, and massive inflammatory cell infiltration, which were alleviated in the DA and Fer-1 groups. ConclusionDA alleviates MIRI by inhibiting ferroptosis and inflammation, demonstrating therapeutic potential in acute myocardial infarction.