The research progress on artemisinin resistance and mechanism of spleen clearing Plasmodium 
	    		
		   		
		   			
		   		
	    	
    	 
    	10.3969/j.issn.1001-1978.2021.02.001
   		
        
        	
        	
        	
        		- Author:
	        		
		        		
		        		
			        		Hua-Jing WANG
			        		
			        		
			        		
			        			1
			        			
			        		
			        		
			        		
			        		
			        		;
		        		
		        		
		        		
			        		Hua-Jing WANG
			        		
			        		
			        		
			        			2
			        			
			        		
			        		
			        		
			        		
			        		;
		        		
		        		
		        		
			        		Ting-Liang JIANG
			        		
			        		
			        		
			        			2
			        			
			        		
			        		
			        		
			        		
			        		;
		        		
		        		
		        		
			        		Cang-Hai LI
			        		
			        		
			        		
			        			2
			        			
			        		
			        		
			        		
			        		
			        		
		        		
		        		
		        		
		        		
		        			
			        		
			        		Author Information
			        		
		        		
		        		
			        		
			        		
			        			1. Research Center of Artemisinin, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences
			        		
			        			2. Tang Center for Herbal Medicine Research, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences,
			        		
		        		
	        		
        		 
        	
        	
        	
        		- Publication Type:Journal Article
 
        	
        	
        		- Keywords:
        			
	        			
	        				
	        				
			        		
				        		artemisinin resistance;
			        		
			        		
			        		
				        		filter blood;
			        		
			        		
			        		
				        		pitting;
			        		
			        		
			        		
				        		red pulb;
			        		
			        		
			        		
				        		spleen;
			        		
			        		
			        		
				        		splenic sinus
			        		
			        		
	        			
        			
        		
 
        	
            
            
            	- From:
	            		
	            			Chinese Pharmacological Bulletin
	            		
	            		 2021;37(2):149-155
	            	
            	
 
            
            
            	- CountryChina
 
            
            
            	- Language:Chinese
 
            
            
            	- 
		        	Abstract:
			       	
			       		
				        
				        	 The resistance to artemisinin generated by plasmodium is defined as follows: After being treated with ACTs for three days, the time to clear plasmodium from the blood of patients with malaria becomes prolonged. The elimination rate of plasmodium in vivo is not only related to the parasiticidal efficacy of antimalarial drugs, but also affected by biological factors such as the mutation of plasmodium themselves, the regulation of human immune function(such as the recognition and processing of phagocytes) , and the efflux of foreign l>odies from immune organs. This article primarily reviews the mutation of plasmodium themselves , the physical and biochemical process of the spleen eliminating plasmodium, including K13 changes, the two blood circulation pathways of the spleen. Since the endothelial cell gap of the splenic venous sinus is elastic, plasmodium or red blood cell debris can be trapped by physical and mechanical sensing methods. The red pulp is the main venue to filter blood, where the immune cells are responsible for the removal of the residues of plasmodium. The physical process of the splenic venous sinus trapping plasmodium is called pitting, and its incidence is influenced by the growth cycle of plasmodium and therapeutic drugs. In this paper, the function of the spleen to eliminate plasmodium will be explained, in an attempt to provide a reference for the biological nature of the artemisinin resistance generated by plasmo-dium.