1.Protective effect of intervention with cannabinoid type-2 receptor agonist JWH133 on pulmonary fibrosis in mice.
Xiao WU ; Wen Ting YANG ; Yi Ju CHENG ; Lin PAN ; Yu Quan ZHANG ; Hong Lan ZHU ; Meng Lin ZHANG
Chinese Journal of Internal Medicine 2023;62(7):841-849
Objective: JWH133, a cannabinoid type 2 receptor agonist, was tested for its ability to protect mice from bleomycin-induced pulmonary fibrosis. Methods: By using a random number generator, 24 C57BL/6J male mice were randomly divided into the control group, model group, JWH133 intervention group, and JWH133+a cannabinoid type-2 receptor antagonist (AM630) inhibitor group, with 6 mice in each group. A mouse pulmonary fibrosis model was established by tracheal instillation of bleomycin (5 mg/kg). Starting from the first day after modeling, the control group mice were intraperitoneally injected with 0.1 ml of 0.9% sodium chloride solution, and the model group mice were intraperitoneally injected with 0.1 ml of 0.9% sodium chloride solution. The JWH133 intervention group mice were intraperitoneally injected with 0.1 ml of JWH133 (2.5 mg/kg, dissolved in physiological saline), and the JWH133+AM630 antagonistic group mice were intraperitoneally injected with 0.1 ml of JWH133 (2.5 mg/kg) and AM630 (2.5 mg/kg). After 28 days, all mice were killed; the lung tissue was obtained, pathological changes were observed, and alveolar inflammation scores and Ashcroft scores were calculated. The content of type Ⅰ collagen in the lung tissue of the four groups of mice was measured using immunohistochemistry. The levels of interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α) in the serum of the four groups of mice were measured using enzyme-linked immunosorbent assay (ELISA), and the content of hydroxyproline (HYP) in the lung tissue of the four groups of mice was measured. Western blotting was used to measure the protein expression levels of type Ⅲ collagen, α-smooth muscle actin (α-SMA), extracellular signal regulated kinase (ERK1/2), phosphorylated P-ERK1/2 (P-ERK1/2), and phosphorylated ribosome S6 kinase type 1 (P-p90RSK) in the lung tissue of mice in the four groups. Real-time quantitative polymerase chain reaction was used to measure the expression levels of collagen Ⅰ, collagen Ⅲ, and α-SMA mRNA in the lung tissue of the four groups of mice. Results: Compared with the control group, the pathological changes in the lung tissue of the model group mice worsened, with an increase in alveolar inflammation score (3.833±0.408 vs. 0.833±0.408, <i>Pi><0.05), an increase in Ashcroft score (7.333±0.516 vs. 2.000±0.633, <i>Pi><0.05), an increase in type Ⅰ collagen absorbance value (0.065±0.008 vs. 0.018±0.006, <i>Pi><0.05), an increase in inflammatory cell infiltration, and an increase in hydroxyproline levels [(1.551±0.051) μg/mg vs. (0.974±0.060) μg/mg, <i>Pi><0.05]. Compared with the model group, the JWH133 intervention group showed reduced pathological changes in lung tissue, decreased alveolar inflammation score (1.833±0.408, <i>Pi><0.05), decreased Ashcroft score (4.167±0.753, <i>Pi><0.05), decreased type Ⅰ collagen absorbance value (0.032±0.004, <i>Pi><0.05), reduced inflammatory cell infiltration, and decreased hydroxyproline levels [(1.148±0.055) μg/mg, <i>Pi><0.05]. Compared with the JWH133 intervention group, the JWH133+AM630 antagonistic group showed more severe pathological changes in the lung tissue of mice, increased alveolar inflammation score and Ashcroft score, increased type Ⅰ collagen absorbance value, increased inflammatory cell infiltration, and increased hydroxyproline levels. Compared with the control group, the expression of α-SMA, type Ⅲ collagen, P-ERK1/2, and P-p90RSK proteins in the lung tissue of the model group mice increased, while the expression of type Ⅰ collagen, type Ⅲ collagen, and α-SMA mRNA increased. Compared with the model group, the protein expression of α-SMA (relative expression 0.60±0.17 vs. 1.34±0.19, <i>Pi><0.05), type Ⅲ collagen (relative expression 0.52±0.09 vs. 1.35±0.14, <i>Pi><0.05), P-ERK1/2 (relative expression 0.32±0.11 vs. 1.14±0.14, <i>Pi><0.05), and P-p90RSK (relative expression 0.43±0.14 vs. 1.15±0.07, <i>Pi><0.05) decreased in the JWH133 intervention group. The type Ⅰ collagen mRNA (2.190±0.362 vs. 5.078±0.792, <i>Pi><0.05), type Ⅲ collagen mRNA (1.750±0.290 vs. 4.935±0.456, <i>Pi><0.05), and α-SMA mRNA (1.588±0.060 vs. 5.192±0.506, <i>Pi><0.05) decreased. Compared with the JWH133 intervention group, the JWH133+AM630 antagonistic group increased the expression of α-SMA, type Ⅲ collagen, P-ERK1/2, and P-p90RSK protein in the lung tissue of mice, and increased the expression of type Ⅲ collagen and α-SMA mRNA. Conclusion: In mice with bleomycin-induced pulmonary fibrosis, the cannabinoid type-2 receptor agonist JWH133 inhibited inflammation and improved extracellular matrix deposition, which alleviated lung fibrosis. The underlying mechanism of action may be related to the activation of the ERK1/2-RSK1 signaling pathway.
Mice
;
Male
;
Animals
;
Pulmonary Fibrosis/pathology*
;
Cannabinoid Receptor Agonists/metabolism*
;
Collagen Type I/pharmacology*
;
Collagen Type III/pharmacology*
;
Hydroxyproline/pharmacology*
;
Sodium Chloride/metabolism*
;
Mice, Inbred C57BL
;
Lung/pathology*
;
Cannabinoids/adverse effects*
;
Bleomycin/metabolism*
;
Collagen/metabolism*
;
Inflammation/pathology*
;
RNA, Messenger/metabolism*
2.Lipopolysaccharide stimulates macrophages to secrete exosomes containing miR-155-5p to promote activation and migration of hepatic stellate cells.
Journal of Southern Medical University 2023;43(6):994-1001
OBJECTIVE:
To observe the effect of exosomes secreted by lipopolysaccharides (LPS)-stimulated macrophages on hepatic stellate cell activation and migration and explore the underlying molecular mechanism.
METHODS:
Human monocyte THP-1 cells were induced to differentiate into macrophages using propylene glycol methyl ether acetic acid (PMA, 100 ng/mL, 24 h) followed by stimulation with LPS, and the culture supernatant of macrophages was collected for extraction of the exosomes by ultracentrifugation. The expression of miR-155-5p in the exosomes was detected using qRT-PCR. A Transwell co-culture system was used to observe the effects of the macrophage-derived exosomes on LX2 cell (a hepatic stellate cell line) proliferation, migration, oxidative stress and the expression of fibrosis biomarkers, which were also observed in LX2 cells transfected with miR-155-5p-mimics or miR-155-5p-inhibitors. Western blotting was used to detect the expressions of SOCS1 and its downstream signal pathway proteins.
RESULTS:
Treatment with the exosomes from LPS-stimulated macrophages significantly enhanced the proliferation and migration ability of LX2 cells and increased the levels of oxidative stress and expressions of the fibrosis markers such as type Ⅰ collagen (<i>Pi> < 0.05). The expression of miR-155-5p in the exosomes secreted by macrophages was significantly increased after LPS treatment (<i>Pi> < 0.01). LX2 cells overexpressing miR-155-5p also exhibited significantly enhanced proliferation and migration with increased oxidative stress levels and expression of type Ⅰ collagen (<i>Pi> < 0.05), and interference of miR-155-5p expression produced the opposite effects. Western blotting showed that miR-155-5p overexpression obviously inhibited SOCS1 expression and promoted p-Smad2/3, Smad2/3 and RhoA protein expressions in LX2 cells (<i>Pi> < 0.05).
CONCLUSION
LPS stimulation of the macrophages increases miR-155-5p expression in the exosomes to promote activation and migration and increase oxidative stress and collagen production in hepatic stellate cells.
Humans
;
Hepatic Stellate Cells
;
Lipopolysaccharides/pharmacology*
;
Collagen Type I
;
Exosomes
;
Macrophages
;
MicroRNAs
3.Analysis of COL1A1 and COL1A2 gene variants in two fetuses with osteogenesis imperfecta.
Yaning ZHANG ; Xinyue WU ; Qiaoyun LIU ; Xiaona YAN ; Huize LIU ; Dairong FENG
Chinese Journal of Medical Genetics 2023;40(7):821-827
OBJECTIVE:
To explore the genetic basis of two fetuses with an osteogenesis imperfecta (OI) phenotype.
METHODS:
Two fetuses diagnosed at the Affiliated Hospital of Weifang Medical College respectively on June 11, 2021 and October 16, 2021 were selected as the study subjects. Clinical data of the fetuses were collected. Amniotic fluid samples of the fetuses and peripheral blood samples of their pedigree members were collected for the extraction of genomic DNA. Whole exome sequencing (WES) and Sanger sequencing were carried out to identify the candidate variants. Minigene splicing reporter analysis was used to validate the variant which may affect the pre-mRNA splicing.
RESULTS:
For fetus 1, ultrasonography at 17+6 weeks of gestation had revealed shortening of bilateral humerus and femurs by more than two weeks, in addition with multiple fractures and angular deformities of long bones. WES revealed that fetus 1 had harbored a heterozygous c.3949_3950insGGCATGT (p.N1317Rfs*114) variant in exon 49 of the COL1A1 gene (NM_000088.4). Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), it was classified as a pathogenic variant (PVS1+PS2+PM2_Supporting) for disrupting the downstream open reading frame resulting in premature translational termination, being de novo in origin, and lacking records in the population and disease databases.For fetus 2, ultrasonography at 23 weeks of gestation also revealed shortening of bilateral humerus and femurs by one and four weeks, respectively, in addition with bending of bilateral femurs, tibias and fibulas. Fetus 2 had harbored a heterozygous c.1557+3A>G variant in intron 26 of the COL1A2 gene (NM_000089.4). Minigene experiment showed that it has induced skipping of exon 26 from the COL1A2 mRNA transcript, resulting in an in-frame deletion (c.1504_1557del) of the COL1A2 mRNA transcript. The variant was inherited from its father and had been previously reported in a family with OI type 4. It was therefore classified as a pathogenic variant (PS3+PM1+PM2_Supporting+PP3+PP5).
CONCLUSION
The c.3949_3950insGGCATGT (p.N1317Rfs*114) variant in the COL1A1 gene and c.1557+3A>G variant in the COL1A2 gene probably underlay the disease in the two fetuses. Above findings not only have enriched the mutational spectrum of OI, but also shed light on the correlation between its genotype and phenotype and provided a basis for genetic counseling and prenatal diagnosis for the affected pedigrees.
Pregnancy
;
Female
;
Humans
;
Osteogenesis Imperfecta/genetics*
;
Collagen Type I, alpha 1 Chain
;
Collagen Type I/genetics*
;
Mutation
;
Fetus
4.Amygdalin Ameliorates Liver Fibrosis through Inhibiting Activation of TGF-β/Smad Signaling.
Zhun XIAO ; Qiang JI ; Ya-Dong FU ; Si-Qi GAO ; Yong-Hong HU ; Wei LIU ; Gao-Feng CHEN ; Yong-Ping MU ; Jia-Mei CHEN ; Ping LIU
Chinese journal of integrative medicine 2023;29(4):316-324
OBJECTIVE:
To observe the effect of amygdalin on liver fibrosis in a liver fibrosis mouse model, and the underlying mechanisms were partly dissected in vivo and in vitro.
METHODS:
Thirty-two male mice were randomly divided into 4 groups, including control, model, low- and high-dose amygdalin-treated groups, 8 mice in each group. Except the control group, mice in the other groups were injected intraperitoneally with 10% carbon tetrachloride (CCl4)-olive oil solution 3 times a week for 6 weeks to induce liver fibrosis. At the first 3 weeks, amygdalin (1.35 and 2.7 mg/kg body weight) were administered by gavage once a day. Mice in the control group received equal quantities of subcutaneous olive oil and intragastric water from the fourth week. At the end of 6 weeks, liver tissue samples were harvested to detect the content of hydroxyproline (Hyp). Hematoxylin and eosin and Sirius red staining were used to observe the inflammation and fibrosis of liver tissue. The expressions of collagen I (Col-I), alpha-smooth muscle actin (α-SMA), CD31 and transforming growth factor β (TGF-β)/Smad signaling pathway were observed by immunohistochemistry, quantitative real-time polymerase chain reaction and Western blot, respectively. The activation models of hepatic stellate cells, JS-1 and LX-2 cells induced by TGF-β1 were used in vitro with or without different concentrations of amygdalin (0.1, 1, 10 µmol/L). LSECs. The effect of different concentrations of amygdalin on the expressions of liver sinusoidal endothelial cells (LSECs) dedifferentiation markers CD31 and CD44 were observed.
RESULTS:
High-dose of amygdalin significantly reduced the Hyp content and percentage of collagen positive area, and decreased the mRNA and protein expressions of Col-I, α-SMA, CD31 and p-Smad2/3 in liver tissues of mice compared to the model group (P<0.01). Amygdalin down-regulated the expressions of Col-I and α-SMA in JS-1 and LX-2 cells, and TGFβ R1, TGFβ R2 and p-Smad2/3 in LX-2 cells compared to the model group (P<0.05 or P<0.01). Moreover, 1 and 10 µmol/L amygdalin inhibited the mRNA and protein expressions of CD31 in LSECs and increased CD44 expression compared to the model group (P<0.05 or P<0.01).
CONCLUSIONS
Amygdalin can dramatically alleviate liver fibrosis induced by CCl4 in mice and inhibit TGF-β/Smad signaling pathway, consequently suppressing HSCs activation and LSECs dedifferentiation to improve angiogenesis.
Rats
;
Male
;
Mice
;
Animals
;
Transforming Growth Factor beta/metabolism*
;
Amygdalin/therapeutic use*
;
Endothelial Cells/metabolism*
;
Olive Oil/therapeutic use*
;
Rats, Wistar
;
Smad Proteins/metabolism*
;
Liver Cirrhosis/metabolism*
;
Liver
;
Transforming Growth Factor beta1/metabolism*
;
Signal Transduction
;
Collagen Type I/metabolism*
;
Carbon Tetrachloride
;
Hepatic Stellate Cells
5.Shexiang Tongxin Dropping Pill Allieviates Heart Failure via Extracellula Matrix-Receptor Interaction Pathways Based on RNA-Seq Transcriptomics and Experimental Studies.
Ya-Fang TAN ; Yu-Han FU ; Min-Zhou ZHANG
Chinese journal of integrative medicine 2023;29(7):600-607
OBJECTIVE:
To investigate the protective mechanisms of Chinese medicine Shexiang Tongxin Dropping Pills (STDP) on heart failure (HF).
METHODS:
Isoproterenol (ISO)-induced HF rat model and angiotensin II (Ang II)-induced neonatal rat cardiac fibroblast (CFs) model were used in the present study. HF rats were treated with and without STDP (3 g/kg). RNA-seq was performed to identify differentially expressed genes (DEGs). Cardiac function was evaluated by echocardiography. Hematoxylin and eosin and Masson's stainings were taken to assess cardiac fibrosis. The levels of collagen I (Col I) and collagen III (Col III) were detected by immunohistochemical staining. CCK8 kit and transwell assay were implemented to test the CFs' proliferative and migratory activity, respectively. The protein expressions of α-smooth muscle actin (α-SMA), matrix metalloproteinase-2 (MMP-2), MMP-9, Col I, and Col III were detected by Western blotting.
RESULTS:
The results of RNA-seq analysis showed that STDP exerted its pharmacological effects on HF via multiple signaling pathways, such as the extracellular matrix (ECM)-receptor interaction, cell cycle, and B cell receptor interaction. Results from in vivo experiments demonstrated that STDP treatment reversed declines in cardiac function, inhibiting myocardial fibrosis, and reversing increases in Col I and Col III expression levels in the hearts of HF rats. Moreover, STDP (6, 9 mg/mL) inhibited the proliferation and migration of CFs exposed to Ang II in vitro (P<0.05). The activation of collagen synthesis and myofibroblast generation were markedly suppressed by STDP, also the synthesis of MMP-2 and MMP-9, as well as ECM components Col I, Col III, and α-SMA were decreased in Ang II-induced neonatal rats' CFs.
CONCLUSIONS
STDP had anti-fibrotic effects in HF, which might be caused by the modulation of ECM-receptor interaction pathways. Through the management of cardiac fibrosis, STDP may be a compelling candidate for improving prognosis of HF.
Rats
;
Animals
;
Matrix Metalloproteinase 2/metabolism*
;
Matrix Metalloproteinase 9/metabolism*
;
RNA-Seq
;
Transcriptome/genetics*
;
Heart Failure/drug therapy*
;
Collagen
;
Collagen Type I/metabolism*
;
Fibrosis
;
Myocardium/pathology*
6.Expression of LRG-1 in mice with hypertensive renal damage and its significance.
Linlin ZHANG ; Xiangcheng XIAO ; Xueling HU ; Wei WANG ; Ling PENG ; Rong TANG
Journal of Central South University(Medical Sciences) 2023;48(6):837-845
OBJECTIVES:
Long-term elevated blood pressure may lead to kidney damage, yet the pathogenesis of hypertensive kidney damage is still unclear. This study aims to explore the role and significance of leucine-rich alpha-2-glycoprotein-1 (LRG-1) in hypertensive renal damage through detecting the levels of LRG-1 in the serum and kidney of mice with hypertensive renal damage and its relationship with related indexes.
METHODS:
C57BL/6 mice were used in this study and randomly divided into a control group, an angiotensin II (Ang II) group, and an Ang II+irbesartan group. The control group was gavaged with physiological saline. The Ang II group was pumped subcutaneously at a rate of 1.5 mg/(kg·d) for 28 days to establish the hypertensive renal damage model in mice, and then gavaged with equivalent physiological saline. The Ang II+irbesartan group used the same method to establish the hypertensive renal damage model, and then was gavaged with irbesartan. Immunohistochemistry and Western blotting were used to detect the expression of LRG-1 and fibrosis-related indicators (collagen I and fibronectin) in renal tissues. ELISA was used to evaluate the level of serum LRG-1 and inflammatory cytokines in mice. The urinary protein-creatinine ratio and renal function were determined, and correlation analysis was conducted.
RESULTS:
Compared with the control group, the levels of serum LRG-1, the expression of LRG-1 protein, collagen I, and fibronectin in kidney in the Ang II group were increased (all <i>Pi><0.01). After treating with irbesartan, renal damage of hypertensive mice was alleviated, while the levels of LRG-1 in serum and kidney were decreased, and the expression of collagen I and fibronectin was down-regulated (all <i>Pi><0.01). Correlation analysis showed that the level of serum LRG-1 was positively correlated with urinary protein-creatinine ratio, blood urea nitrogen, and blood creatinine level in hypertensive kidney damage mice. Serum level of LRG-1 was also positively correlated with serum inflammatory factors including TNF-α, IL-1β, and IL-6.
CONCLUSIONS
Hypertensive renal damage mice display elevated expression of LRG-1 in serum and kidney, and irbesartan can reduce the expression of LRG-1 while alleviating renal damage. The level of serum LRG-1 is positively correlated with the degree of hypertensive renal damage, suggesting that it may participate in the occurrence and development of hypertensive renal damage.
Animals
;
Mice
;
Mice, Inbred C57BL
;
Fibronectins
;
Irbesartan
;
Creatinine
;
Kidney/physiology*
;
Hypertension/complications*
;
Angiotensin II
;
Collagen Type I
7.Cryptic COL1A1-PDGFB fusion in dermatofibrosarcoma protuberans: a clinicopathological and genetic analysis.
Min CHEN ; Yu Mei CHEN ; Yang LU ; Xin HE ; Heng PENG ; Hong Ying ZHANG
Chinese Journal of Pathology 2023;52(1):13-18
Objective: To investigate the clinicopathological and cytogenetic features of cryptic COL1A1-PDGFB fusion dermatofibrosarcoma protuberans (CC-DFSP). Methods: Three cases of CC-DFSP diagnosed in West China Hospital, Sichuan University, Chengdu, China from January 2021 to September 2021 were studied. Immunohistochemistry for CD34 and other markers, fluorescence in situ hybridization (FISH) for PDGFB, COL1A1-PDGFB and COL1A1, next-generation sequencing (NGS), reverse-transcriptase polymerase chain reaction (RT-PCR) and Sanger sequencing were performed. Results: There were three cases of CC-DFSP, including two females and one male. The patients were 29, 44 and 32 years old, respectively. The sites were abdominal wall, caruncle and scapula. Microscopically, they were poorly circumscribed. The spindle cells of the tumors infiltrated into the whole dermis or subcutaneous tissues, typically arranging in a storiform pattern. Immunohistochemically, the neoplastic cells exhibited diffuse CD34 expression, but were negative for S-100, SMA, and Myogenin. Loss of H3K27me3 was not observed in the tumor cells. The Ki-67 index was 10%-15%. The 3 cases were all negative for PDGFB rearrangement and COL1A1-PDGFB fusion, whereas showing unbalanced rearrangement for COL1A1. Case 1 showed a COL1A1 (exon 31)-PDGFB (exon 2) fusion using NGS, which was further validated through RT-PCR and Sanger sequencing. All patients underwent extended surgical resection. Except for case 3 with recurrence 2 years after surgical resection, the other 2 cases showed no recurrence or metastasis during the follow-up. Conclusions: FISH has shown its validity for detecting PDGFB rearrangement and COL1A1-PDGFB fusion and widely applied in clinical detection. However, for cases with negative routine FISH screening that were highly suspicious for DFSPs, supplementary NGS or at least COL1A1 break-apart FISH screening could be helpful to identify cryptic COL1A1-PDGFB fusions or other variant fusions.
Female
;
Humans
;
Male
;
Collagen Type I, alpha 1 Chain
;
Dermatofibrosarcoma/pathology*
;
In Situ Hybridization, Fluorescence
;
Oncogene Proteins, Fusion/genetics*
;
Proto-Oncogene Proteins c-sis/genetics*
;
Skin Neoplasms/pathology*
;
Adult
8.MiR-340 mediates the involvement of high mobility group box 1 in the pathogenesis of liver fibrosis.
Sha Ling LI ; Pan Pan YI ; Ruo Chan CHEN ; Ze Bing HUANG ; Xing Wang HU ; Xue Gong FAN
Chinese Journal of Hepatology 2023;31(1):77-83
Objective: To explore the pathogenic mechanism of the miR-340/high mobility group box 1 (HMGB1) axis in the formation of liver fibrosis. Methods: A rat liver fibrosis model was established by injecting CCl(4) intraperitoneally. miRNAs targeting and validating HMGB1 were selected with gene microarrays after screening the differentially expressed miRNAs in rats with normal and hepatic fibrosis. The effect of miRNA expressional changes on HMGB1 levels was detected by qPCR. Dual luciferase gene reporter assays (LUC) was used to verify the targeting relationship between miR-340 and HMGB1. The proliferative activity of the hepatic stellate cell line HSC-T6 was detected by thiazolyl blue tetrazolium bromide (MTT) assay after co-transfection of miRNA mimics and HMGB1 overexpression vector, and the expression of extracellular matrix (ECM) proteins type I collagen and α-smooth muscle actin (SMA) was detected by western blot. Statistical analysis was performed by analysis of variance and the LSD-t test. Results: Hematoxylin-eosin and Masson staining results showed that the rat model of liver fibrosis was successfully established. Gene microarray analysis and bioinformatics prediction had detected eight miRNAs possibly targeting HMGB1, and animal model validation had detected miR-340. qPCR detection results showed that miR-340 had inhibited the expression of HMGB1, and a luciferase complementation assay suggested that miR-340 had targeted HMGB1. Functional experiments results showed that HMGB1 overexpression had enhanced cell proliferation activity and the expression of type I collagen and α-SMA, while miR-340 mimics had not only inhibited cell proliferation activity and the expression of HMGB1, type I collagen, and α-SMA, but also partially reversed the promoting effect of HMGB1 on cell proliferation and ECM synthesis. Conclusion: miR-340 targets HMGB1 to inhibit the proliferation and ECM deposition in hepatic stellate cells and plays a protective role during the process of liver fibrosis.
Animals
;
Rats
;
Cell Proliferation
;
Collagen Type I/metabolism*
;
Fibrosis
;
Hepatic Stellate Cells
;
HMGB1 Protein/genetics*
;
Liver Cirrhosis/pathology*
;
MicroRNAs/metabolism*
9.Involvement of Interleukin-1 β/Insulin-Like Growth Factor 1 in Ameliorating Effects of Electroacupuncture on Myocardial Fibrosis Induced by Essential Hypertension.
Juan-Juan XIN ; Jun-Hong GAO ; Qun LIU ; Yu-Xue ZHAO ; Chen ZHOU ; Xiao-Chun YU
Chinese journal of integrative medicine 2023;29(2):162-169
OBJECTIVE:
To investigate the effect of electroacupuncture (EA) at Neiguan (PC 6) on myocardial fibrosis in spontaneously hypertensive rats (SHRs), and to explore the contribution of interleukin-1 β (IL-1 β), insulin-like growth factor 1 (IGF-1), and transforming growth factor β 1 (TGF- β 1) to the effects.
METHODS:
Nine 12-weeks-old Wistar Kyoto (WKY) male rats were employed as the normal group. Twenty-seven SHRs were equally randomized into SHR, SHR+EA, and SHR + sham groups. EA was applied at bilateral PC 6 once a day 30 min per day in 8 consecutive weeks. After 8-weeks EA treatment at PC 6, histopathologic changes of collagen type I (Col I), collagen type 1 (Col 1) and the levels of IGF-1, 1L-1 β, TGF- β 1, matrix metalloproteinase (MMP)-2 and MMP-9 were examined in myocardial tissure respectively.
RESULTS:
After 8-weeks EA treatment at PC 6, the enhanced myocardial fibrosis in SHRs were characterized by the increased mean fluorescence intensity of Col I and Col 1 in myocardium tissue (P<0.01). All these abnormal alterations above in SHR + EA group was significantly lower compared with the SHR group (P<0.01). Meanwhile, the increased levels of IL-1 β, IGF-1, TGF-β 1 in serum or myocardial tissue of SHRs, diminished MMP 9 mRNA expression in SHRs were also markedly inhibited after 8 weeks of EA treatment (P<0.05 or P<0.01). Furthermore, the contents of IL-1 β, IGF-1, TGF-β 1 in myocardial tissue were positively correlated with the systolic blood pressure and hydroxyproline respectively (P<0.01).
CONCLUSION
EA at bilateral PC 6 could ameliorate cardiac fibrosis in SHRs, which might be mediated by regulation of 1L-1 β/IGF-1-TGF- β 1-MMP9 pathway.
Rats
;
Animals
;
Male
;
Rats, Inbred WKY
;
Electroacupuncture
;
Hypertension/therapy*
;
Insulin-Like Growth Factor I
;
Interleukin-1beta
;
Rats, Inbred SHR
;
Essential Hypertension
;
Myocardium/pathology*
;
Collagen Type I
;
Fibrosis
10.Arecoline induces activation of human oral fibroblasts by promoting macrophage secretion of exosomes containing miR-155-5p.
Yong Qi HUANG ; Wei YU ; Yue Hua YOU
Journal of Southern Medical University 2023;43(1):60-67
OBJECTIVE:
To investigate the mechanism by which arecoline regulates the level of miR-155-5p in macrophage-secreted exosomes to induce the transformation of human oral mucosal fibroblasts (HOMFs) into fibroblast phenotype.
METHODS:
Exosomes were harvested from human monocytic cell line THP-1 with or without arecoline treatment. The effects of arecoline-treated THP-1 cell culture supernatant (CS), THP-1-derived exosomes (EXO), exosome-depleted THP-1 cell supernatant (NES), miR-155-5p overexpression, and miR-155-5p inhibitor on migration ability of arecoline-treated HOMF cells were examined using Transwell migration assay. The polarization of THP-1 cells was detected using flow cytometry. DCFH-DA was used to detect the level of oxidative stress in the cells with different treatments. The mRNA and protein expressions of α- SMA, type I collagen and SOCS1 in the cells were detected with qRT-PCR and Western blotting.
RESULTS:
Flow cytometry showed that arecoline-treated THP-1 cells exhibited obvious polarization from M0 to M1. Both the supernatant and exosomes from arecoline-treated THP-1 cells significantly enhanced the migration ability of HOMF cells, increased intracellular oxidative stress, up-regulated the expressions of miR-155- 5p and the mRNA and protein levels of α-SMA and type I collagen, and lowered the mRNA and protein expressions of SOCS1. In HOMF cells treated with exosomes from arecoline- treated THP-1 cells, overexpression of miR-155-5p significantly enhanced cell migration ability and increased cellular expressions of α-SMA and type I collagen, and miR-155-5p inhibitor caused the opposite changes.
CONCLUSION
Arecoline can up-regulate miR-155-5p expression in THP-1 cells and inhibit the expression of SOCS1 protein in HOMF cells <i>viai> the exosome pathway, thus promoting the fibrotic phenotype transformation of HOMF cells.
Humans
;
Exosomes
;
Arecoline/pharmacology*
;
Collagen Type I
;
Fibroblasts
;
Macrophages
;
MicroRNAs

Result Analysis
Print
Save
E-mail