1.Phenylpropanoid pathway in plants and its role in response to heavy metal stress: a review.
Wenjia GE ; Jianpan XIN ; Runan TIAN
Chinese Journal of Biotechnology 2023;39(2):425-445
Phenylpropanoid metabolic pathway is one of the most important secondary metabolic pathways in plants. It directly or indirectly plays an antioxidant role in plant resistance to heavy metal stress, and can improve the absorption and stress tolerance of plants to heavy metal ions. In this paper, the core reactions and key enzymes of the phenylpropanoid metabolic pathway were summarized, and the biosynthetic processes of key metabolites such as lignin, flavonoids and proanthocyanidins and relevant mechanisms were analyzed. Based on this, the mechanisms of key products of phenylpropanoid metabolic pathway in response to heavy metal stress were discussed. The perspectives on the involvement of phenylpropanoid metabolism in plant defense against heavy metal stress provides a theoretical basis for improving the phytoremediation efficiency of heavy metal polluted environment.
Plants/metabolism*
;
Metals, Heavy/metabolism*
;
Flavonoids/metabolism*
;
Biodegradation, Environmental
;
Antioxidants
2.Interaction between microplastics and microorganisms in soil environment: a review.
Rong LIANG ; Feihu SUN ; Chi ZHANG ; Ruifang ZHANG ; Hong WANG ; Xinxin WANG
Chinese Journal of Biotechnology 2023;39(2):500-515
As a widespread pollutant in the environment, research on microplastics have attracted much attention. This review systematically analyzed the interaction between microplastics and soil microorganisms based on existing literatures. Microplastics can change the structure and diversity of soil microbial communities directly or indirectly. The magnitude of these effects depends on the type, dose and shape of microplastics. Meanwhile, soil microorganisms can adapt to the changes caused by microplastics through forming surface biofilm and selecting population. This review also summarized the biodegradation mechanism of microplastics, and explored the factors affecting this process. Microorganisms will firstly colonize the surface of microplastics, and then secrete a variety of extracellular enzymes to function at specific sites, converting polymers into lower polymers or monomers. Finally, the depolymerized small molecules enter the cell for further catabolism. The factors affecting this degradation process are not only the physical and chemical properties of the microplastics, such as molecular weight, density and crystallinity, but also some biological and abiotic factors that affect the growth and metabolism of related microorganisms and the enzymatic activities. Future studies should focus on the connection with the actual environment, and develop new technologies of microplastics biodegradation to solve the problem of microplastic pollution.
Microplastics
;
Plastics
;
Soil
;
Polymers
;
Biodegradation, Environmental
3.Design and applications of synthetic electroactive microbial consortia.
Baocai ZHANG ; Yiyun WANG ; Sicheng SHI ; Feng LI ; Hao SONG
Chinese Journal of Biotechnology 2023;39(3):858-880
Synthetic electroactive microbial consortia, which include exoelectrogenic and electrotrophic communities, catalyze the exchange of chemical and electrical energy in cascade metabolic reactions among different microbial strains. In comparison to a single strain, a community-based organisation that assigns tasks to multiple strains enables a broader feedstock spectrum, faster bi-directional electron transfer, and greater robustness. Therefore, the electroactive microbial consortia held great promise for a variety of applications such as bioelectricity and biohydrogen production, wastewater treatment, bioremediation, carbon and nitrogen fixation, and synthesis of biofuels, inorganic nanomaterials, and polymers. This review firstly summarized the mechanisms of biotic-abiotic interfacial electron transfer as well as biotic-biotic interspecific electron transfer in synthetic electroactive microbial consortia. This was followed by introducing the network of substance and energy metabolism in a synthetic electroactive microbial consortia designed by using the "division-of-labor" principle. Then, the strategies for engineering synthetic electroactive microbial consortiums were explored, which included intercellular communications optimization and ecological niche optimization. We further discussed the specific applications of synthetic electroactive microbial consortia. For instance, the synthetic exoelectrogenic communities were applied to biomass generation power technology, biophotovoltaics for the generation of renewable energy and the fixation of CO2. Moreover, the synthetic electrotrophic communities were applied to light-driven N2 fixation. Finally, this review prospected future research of the synthetic electroactive microbial consortia.
Microbial Consortia
;
Synthetic Biology
;
Electron Transport
;
Electricity
;
Biodegradation, Environmental
4.Pyridine degradation characteristics of Rhodococcus sp. LV4 under high salinity conditions.
Ying WANG ; Hu CHEN ; Mengdi XU ; Yongkang LÜ
Chinese Journal of Biotechnology 2023;39(3):1202-1216
Biodegradation of pyridine pollutant by microorganisms is one of the economical and effective methods to solve the environmental pollution of pyridine under high salinity conditions. To this end, screening of microorganisms with pyridine degradation capability and high salinity tolerance is an important prerequisite. In this paper, a salt-resistant pyridine degradation bacterium was isolated from the activated sludge of Shanxi coking wastewater treatment plant, and identified as a bacterium belonging to Rhodococcus on the basis of colony morphology and 16S rDNA gene phylogenetic analysis. Salt tolerance experiment showed that strain LV4 could grow and degrade pyridine with the initial concentration of 500 mg/L completely in 0%-6% saline environment. However, when the salinity was higher than 4%, strain LV4 grew slowly and the degradation time of pyridine by strain LV4 was significantly prolonged. Scanning electron microscopy showed that the cell division of strain LV4 became slower, and more granular extracellular polymeric substance (EPS) was induced to secrete in high salinity environment. When the salinity was not higher than 4%, strain LV4 responded to the high salinity environment mainly through increasing the protein content in EPS. The optimum conditions for pyridine degradation by strain LV4 at 4% salinity were 30 ℃, pH 7.0 and 120 r/min (DO 10.30 mg/L). Under these optimal conditions, strain LV4 could completely degrade pyridine with an initial concentration of 500 mg/L at a maximum rate of (29.10±0.18) mg/(L·h) after 12 h adaptation period, and the total organic carbon (TOC) removal efficiency reached 88.36%, indicating that stain LV4 has a good mineralization effect on pyridine. By analyzing the intermediate products in pyridine degradation process, it was speculated that strain LV4 achieved pyridine ring opening and degradation mainly through two metabolic pathways: pyridine-ring hydroxylation and pyridine-ring hydrogenation. The rapid degradation of pyridine by strain LV4 in high salinity environment indicates its application potential in the pollution control of high salinity pyridine environment.
Rhodococcus/genetics*
;
Phylogeny
;
Extracellular Polymeric Substance Matrix/metabolism*
;
Sewage
;
Biodegradation, Environmental
;
Pyridines/metabolism*
5.Preface to the special issue: biotechnology of plastic waste degradation and valorization.
Jie ZHOU ; Tianyuan SU ; Min JIANG ; Qingsheng QI
Chinese Journal of Biotechnology 2023;39(5):1861-1866
Synthetic plastics have been widely used in various fields of the national economy and are the pillar industry. However, irregular production, plastic product use, and plastic waste piling have caused long-term accumulation in the environment, contributing considerably to the global solid waste stream and environmental plastic pollution, which has become a global problem to be solved. Biodegradation has recently emerged as a viable disposal method for a circular plastic economy and has become a thriving research area. In recent years, important breakthroughs have been made in the screening, isolation, and identification of plastic-degrading microorganisms/enzyme resources and their further engineering, which provide new ideas and solutions for treating microplastics in the environment and the closed-loop bio-recycling of waste plastics. On the other hand, the use of microorganisms (pure cultures or consortia) to further transform different plastic degradants into biodegradable plastics and other compounds with high added value is of great significance, promoting the development of a plastic recycling economy and reducing the carbon emission of plastics in their life cycle. We edited a Special Issue on the topic of "Biotechnology of Plastic Waste Degradation and Valorization", focusing on the researches progress in three aspects: Mining microbial and enzyme resources for plastic biodegradation, Design and engineering of plastic depolymerase, and biological high-value transformation of plastic degradants. In total, 16 papers have been collected in this issue including reviews, comments, and research articles, which provide reference and guidance for further development of plastic waste degradation and valorization biotechnology.
Biodegradable Plastics
;
Biodegradation, Environmental
;
Biotechnology
6.Advances in methods for detecting plastics biodegradation.
Yuanbo WANG ; Shiyue ZHENG ; Fan WANG ; Junqian PENG ; Jie ZHOU ; Fang WANG ; Min JIANG ; Xiaoqiang CHEN
Chinese Journal of Biotechnology 2023;39(5):1889-1911
The pollution caused by improper handling of plastics has become a global challenge. In addition to recycling plastics and using biodegradable plastics, an alternative solution is to seek efficient methods for degrading plastics. Among them, the methods of using biodegradable enzymes or microorganisms to treat plastics have attracted increasing attention because of its advantages of mild conditions and no secondary environmental pollution. Developing highly efficient depolymerizing microorganisms/enzymes is the core for plastics biodegradation. However, the current analysis and detection methods cannot meet the requirements for screening efficient plastics biodegraders. It is thus of great significance to develop rapid and accurate analysis methods for screening biodegraders and evaluating biodegradation efficiency. This review summarizes the recent application of various commonly used analytical techniques in plastics biodegradation, including high performance liquid chromatography, infrared spectroscopy, gel permeation chromatography, and determination of zone of clearance, with fluorescence analysis techniques highlighted. This review may facilitate standardizing the characterization and analysis of plastics biodegradation process and developing more efficient methods for screening plastics biodegraders.
Biodegradable Plastics/chemistry*
;
Biodegradation, Environmental
7.Synthesis, biodegradation and waste disposal of polylactic acid plastics: a review.
Bin XIE ; Rongrong BAI ; Huashan SUN ; Xiaoli ZHOU ; Weiliang DONG ; Jie ZHOU ; Min JIANG
Chinese Journal of Biotechnology 2023;39(5):1912-1929
With the escalation of plastic bans and restrictions, bio-based plastics, represented by polylactic acid (PLA), have become a major alternative to traditional plastics in the current market and are unanimously regarded as having potential for development. However, there are still several misconceptions about bio-based plastics, whose complete degradation requires specific composting conditions. Bio-based plastics might be slow to degrade when it is released into the natural environment. They might also be harmful to humans, biodiversity and ecosystem function as traditional petroleum-based plastics do. In recent years, with the increasing production capacity and market size of PLA plastics in China, there is an urgent need to investigate and further strengthen the management of the life cycle of PLA and other bio-based plastics. In particular, the in-situ biodegradability and recycling of hard-to-recycle bio-based plastics in the ecological environment should be focused. This review introduces the characteristics, synthesis and commercialization of PLA plastics, summarizes the current research progress of microbial and enzymatic degradation of PLA plastics, and discusses their biodegradation mechanisms. Moreover, two bio-disposal methods against PLA plastic waste, including microbial in-situ treatment and enzymatic closed-loop recycling, are proposed. At last, the prospects and trends for the development of PLA plastics are presented.
Humans
;
Ecosystem
;
Biodegradable Plastics
;
Polyesters
;
Biodegradation, Environmental
8.Advances in biodegradation of polyolefin plastics.
Yingbo YUAN ; Wenkai ZHOU ; Quanfeng LIANG ; Longyang DIAN ; Tianyuan SU ; Qingsheng QI
Chinese Journal of Biotechnology 2023;39(5):1930-1948
Polyolefin plastics are a group of polymers with C-C backbone that have been widely used in various areas of daily life. Due to their stable chemical properties and poor biodegradability, polyolefin plastic waste continues to accumulate worldwide, causing serious environmental pollution and ecological crises. In recent years, biological degradation of polyolefin plastics has attracted considerable attention. The abundant microbial resources in the nature offer the possibility of biodegradation of polyolefin plastic waste, and microorganisms capable of degrading polyolefin have been reported. This review summarizes the research progress on the biodegradation microbial resources and the biodegradation mechanisms of polyolefin plastics, presents the current challenges in the biodegradation of polyolefin plastics, and provides an outlook on future research directions.
Plastics/metabolism*
;
Polymers/metabolism*
;
Polyenes
;
Biodegradation, Environmental
9.Polyethylene biodegradation: current status and perspectives.
Liting ZHANG ; Bo ZHANG ; Weidong XU ; Zhongli CUI ; Hui CAO
Chinese Journal of Biotechnology 2023;39(5):1949-1962
Polyethylene (PE) is the most abundantly used synthetic resin and one of the most resistant to degradation, and its massive accumulation in the environment has caused serious pollution. Traditional landfill, composting and incineration technologies can hardly meet the requirements of environmental protection. Biodegradation is an eco-friendly, low-cost and promising method to solve the plastic pollution problem. This review summarizes the chemical structure of PE, the species of PE degrading microorganisms, degrading enzymes and metabolic pathways. Future research is suggested to focus on the screening of high-efficiency PE degrading strains, the construction of synthetic microbial consortia, the screening and modification of degrading enzymes, so as to provide selectable pathways and theoretical references for PE biodegradation research.
Polyethylene/metabolism*
;
Bacteria/metabolism*
;
Plastics/metabolism*
;
Biodegradation, Environmental
;
Microbial Consortia
10.Screening and identification of a polyurethane-degrading bacterium G-11 and its plastic degradation characteristics.
Zhitong JIANG ; Xue CHEN ; Jinhui LEI ; Huizhen XUE ; Bo ZHANG ; Xiaofan XU ; Huijing GENG ; Zhoukun LI ; Xin YAN ; Weiliang DONG ; Hui CAO ; Zhongli CUI
Chinese Journal of Biotechnology 2023;39(5):1963-1975
Polyurethane (PUR) plastics is widely used because of its unique physical and chemical properties. However, unreasonable disposal of the vast amount of used PUR plastics has caused serious environmental pollution. The efficient degradation and utilization of used PUR plastics by means of microorganisms has become one of the current research hotspots, and efficient PUR degrading microbes are the key to the biological treatment of PUR plastics. In this study, an Impranil DLN-degrading bacteria G-11 was isolated from used PUR plastic samples collected from landfill, and its PUR-degrading characteristics were studied. Strain G-11 was identified as Amycolatopsis sp. through 16S rRNA gene sequence alignment. PUR degradation experiment showed that the weight loss rate of the commercial PUR plastics upon treatment of strain G-11 was 4.67%. Scanning electron microscope (SEM) showed that the surface structure of G-11-treated PUR plastics was destroyed with an eroded morphology. Contact angle and thermogravimetry analysis (TGA) showed that the hydrophilicity of PUR plastics increased along with decreased thermal stability upon treatment by strain G-11, which were consistent with the weight loss and morphological observation. These results indicated that strain G-11 isolated from landfill has potential application in biodegradation of waste PUR plastics.
Plastics/metabolism*
;
Polyurethanes/chemistry*
;
RNA, Ribosomal, 16S
;
Bacteria/genetics*
;
Biodegradation, Environmental

Result Analysis
Print
Save
E-mail