1.Zuoguiwan Mitigates Oxidative Stress in Rat Model of Hyperthyroidism Due to Kidney-Yin Deficiency via DRD4/NOX4 Pathway
Ling LIN ; Qianming LIANG ; Changsheng DENG ; Li RU ; Zhiyong XU ; Chao LI ; Mingshun SHEN ; Yueming YUAN ; Muzi LI ; Lei YANG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):43-51
ObjectiveTo decipher the mechanism by which Zuoguiwan (ZGW) treat hyperthyroidism in rats with kidney-Yin deficiency based on the dopamine receptor D4 (DRD4)/nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 (NOX4) signaling pathway. MethodsThe rat model of kidney-Yin deficiency was induced by unilateral intramuscular injection of dexamethasone (0.35 mg·kg-1). After successful modeling, the rats were randomized into model, methimazole (positive control, 5 mg·kg-1), low-, medium-, and high-dose (1.85, 3.70, 7.40 g·kg-1, respectively) ZGW, and normal control groups. After 21 days of continuous gavage, the behavioral indexes and body weight changes of rats were evaluated. The pathological changes of the renal tissue were observed by hematoxylin-eosin staining. The serum levels of thyroid hormones [triiodothyronine (T3), thyroxine (T4), thyroid-stimulating hormone (TSH)], renal function indexes [serum creatine (Scr) and blood urea nitrogen (BUN)], energy metabolism markers [cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP)], and oxidative stress-related factors [superoxide dismutase (SOD), malondialdehyde (MDA), and NADPH)] were measured by enzyme-linked immunosorbent assay (ELISA). Western blot was employed to analyze the expression of DRD4, NOX4, mitochondrial respiratory chain complex proteins [NADH:ubiquinone oxidoreductase subunit S4 (NDUFS4) and cytochrome C oxidase subunit 4 (COX4)], and inflammation-related protein [tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), p38 mitogen-activated protein kinase (MAPK)] pathway in the renal tissue. ResultsCompared with the normal group, the model group showed mental malaise, body weight decreases (P<0.01), inflammatory cell infiltration in the renal tissue, a few residual parotid glands in the thyroid, elevations in serum levels of T3, T4, Scr, BUN, cAMP, cAMP/cGMP, MDA, and NADPH (P<0.01), down-regulation in protein levels of TSH, SOD, and DRD4 (P<0.05, P<0.01), and up-regulation in expression of NOX4, p-p38 MAPK/p38 MAPK, and inflammatory factors (P<0.01). Compared with the model group, ZGW increased the body weight (P<0.05, P<0.01), reduced the infiltration of renal interstitial inflammatory cells, restored the thyroid structure and follicle size, lowered the serum levels of T3, T4, Scr, BUN, cAMP, cAMP/cGMP, MDA and NADPH (P<0.05, P<0.01), up-regulated the expression of TSH, SOD and DRD4 (P<0.05, P<0.01), and down-regulated the expression of NOX4, p-p38 MAPK/p38 MAPK, and inflammatory factors (P<0.05, P<0.01). Moreover, high-dose ZGW outperformed methimazole (P<0.05). ConclusionBy activating DRD4, ZGW can inhibit the expression of NOX4 mediated by the p38 MAPK pathway, reduce oxidative stress and inflammatory response, thereby ameliorating the pathological state of hyperthyroidism due to kidney-Yin deficiency. This study provides new molecular mechanism support for the clinical application of ZGW.
2.Identification and Biological Characterization of Pathogen and Screening of Effective Fungicides for Wilt of Tetradium ruticarpum
Yuxin LIU ; Qin XU ; Yue YUAN ; Tiantian GUO ; Zheng'en XIAO ; Shaotian ZHANG ; Ming LIU ; Fuqiang YIN
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):198-206
ObjectiveTo identify the pathogen species responsible for the wilt disease of Tetradium ruticarpum in Chongqing, investigate there biological characteristics, and screen effective fungicides, so as to provide a theoretical basis for disease control in production. MethodsThe pathogen was isolated via the tissue culture method. Pathogenicity was verified according to Koch's postulates. The pathogen was identified based on morphological characteristics and multi-gene phylogenetic analysis. The mycelial growth rate method was used for biological characterization of the pathogen and fungicide screening. ResultsThe pathogen colonies were nearly circular with irregular edges, white, short, velvety aerial hyphae, and pale purple undersides. Macroconidia were colorless, sickle-shaped, with 3-5 septa, while microconidia were transparent, elliptical, aseptate or with 1-2 septa. Multi-gene phylogenetic analysis showed that the pathogen clustered in the same clade as Fusarium fujikuroi with 100% support, which, combined with morphological characteristics, identified the pathogen causing wilt of T. ruticarpum in Chongqing as F. fujikuroi. The optimal conditions for the mycelial growth of F. fujikuroi were mung bean agar (MBA) with glucose as the carbon source, beef extract and yeast powder as nitrogen sources, 28 ℃, pH 7.0, and alternating light/dark conditions. The optimal conditions for sporulation were potato dextrose agar (PDA) with glucose as the carbon source, beef extract as the nitrogen source, 28 ℃, pH 7.0, and complete darkness. Among chemical fungicides, phenazine-1-carboxylic acid exhibited the strongest inhibitory effect on F. fujikuroi. Shenqinmycin and tetramycin were the most effective bio-fungicides. ConclusionThis study is the first to report F. fujikuroi as the causal agent of wilt disease in T. rutaecarpa. The chemical fungicide phenazine-1-carboxylic acid and the bio-fungicides shenqinmycin and tetramycin showed strong inhibitory effects against F. fujikuroi.
3.Luteolin improves myocardial cell death induced by serum from rats with spinal cord injury
Wenwen ZHANG ; Mengru XU ; Yuan TIAN ; Lifei ZHANG ; Shu SHI ; Ning WANG ; Yuan YUAN ; Li WANG ; Haihu HAO
Chinese Journal of Tissue Engineering Research 2025;29(1):38-43
BACKGROUND:Cardiac dysfunction due to spinal cord injury is an important factor of death in patients with spinal cord injury;however,the specific mechanism is still not clear.Therefore,revealing the mechanism of cardiac dysfunction in spinal cord injury patients is of great significance to improve their quality of life and survival rate. OBJECTIVE:To investigate the mechanism of luteolin in improving serum-induced myocardial cell death in spinal cord injury rats. METHODS:Allen's impact instrument was used to damage the spine T9-T11 of male SD rats to establish a spinal cord injury model meanwhile a sham operation group was set as the control group.The serum of rats of each group was collected.H9c2 cells were divided into a blank control group,a sham operated rat serum group,a spinal cord injury rat serum group and a luteolin pretreatment group.The cells in blank control group were only cultured with ordinary culture medium.The cells in the sham operated rat serum group were treated with medium containing 10%serum from sham operated rat.The cells in the spinal cord injury rat serum group were treated with medium containing 10%serum from spinal cord injury rat.The cells in the luteolin pretreatment group were precultured with a final concentration of 20 μmol/L luteolin for 4 hours and then changed to a medium containing 10%rat serum from spinal cord injury rat.After 24 hours of culture,the survival rate of each group of H9c2 cells was measured by CCK-8 assay.Western blot assay was used to detect the expression of autophagy related protein LC3 and p62 in H9c2 cells in each group. RESULTS AND CONCLUSION:Compared with the blank control group,there was no significant change in cell survival rate in the sham operated rat serum group(P>0.05).Compared with the sham operated rat serum group,the cell survival rate(P<0.01)and the expression of LC3 protein(P<0.05)in spinal cord injury rat serum group was significantly reduced,and the expression of p62 protein was significantly increased(P<0.05).Compared with the spinal cord injury rat serum group,the survival rate of cells in the luteolin pretreatment group significantly increased(P<0.000 1);the expression of LC3 protein significantly increased(P<0.05),and the expression of p62 protein significantly decreased(P<0.05).The results indicate that luteolin may improve myocardial cell death induced by serum from rats with spinal cord injury by promoting autophagy.
4.Advantages of modified ligation method for spinal cord injury modeling
Daohui LI ; Xiaoshuang XU ; Zhengtao LI ; Xinpeng TIAN ; Hangchuan BI ; Yuan LIU ; Yongwen DAI ; Lingqiang CHEN
Chinese Journal of Tissue Engineering Research 2025;29(2):379-384
BACKGROUND:Currently,different methods of model establishment have been derived from different injury modes of spinal cord injury.Traditional physical injury modeling methods have their own advantages and disadvantages,and there is a lack of more effective and stable animal models of spinal cord injury. OBJECTIVE:To establish a reproducible,controllable,trauma-free,low-mortality,more stable,widely applicable,and short-term postoperative care rat model of spinal cord injury. METHODS:Forty Sprague-Dawley rats with similar body mass and ages were randomly divided into a control group and an improved group,with 20 rats in each group.Animal models of spinal cord injury in the control group were constructed using a clip model method,while the improved group used a modified ligation method based on the compression method to make the spinal cord injury models using suture ligation based on fenestration.Postoperative comparisons were made between the two groups,assessing urination behavior,hematuria,pyuria(infection rate),mortality,scoliosis rate and Basso-Beattie-Bresnahan locomotor rating scale scores at 1,3,5,and 7 days after modeling. RESULTS AND CONCLUSION:Compared with the conventional modeling method,the modified ligation method based on the compression method resulted in faster recovery of urination behavior,lower hematuria rate,lower infection rate,lower mortality rate,lower scoliosis rate,and more concentrated and stable Basso-Beattie-Bresnahan scores(all below 2 points within 1 week).This proves that the modified ligation method based on compression is more suitable for the establishment of spinal cord injury models in rats.
5.Establishment and stress analysis of a finite element model for adolescent cervical disc herniation
Yuxin ZHAO ; Liang LIANG ; Feng JIN ; Yangyang XU ; Zhijie KANG ; Yuan FANG ; Yujie HE ; Xing WANG ; Haiyan WANG ; Xiaohe LI
Chinese Journal of Tissue Engineering Research 2025;29(3):448-454
BACKGROUND:Cervical disc herniation can cause pain in the neck and shoulder area,as well as radiating pain in the upper limbs.The incidence rate is increasing year by year and tends to affect younger individuals.Fully understanding the biomechanical characteristics of the cervical spine in adolescents is of great significance for preventing and delaying the onset of cervical disc herniation in this age group. OBJECTIVE:To reconstruct cervical spine models for both healthy adolescents and adolescent patients with cervical disc herniation utilizing finite element analysis techniques,to analyze the motion range of the C1-T1 cervical vertebrae as well as the biomechanical characteristics of the annulus fibrosus,nucleus pulposus,endplates,and the cartilage of the small joints. METHODS:A normal adolescent's cervical spine and an adolescent patient with cervical disc herniation were selected in this study.The continuous scan cervical spine CT raw image data were imported into Mimics 21.0 in DICOM format.The C1-T1 vertebrae were reconstructed separately.Subsequently,the established models were imported into the 3-Matic software for disc reconstruction.The perfected models were then imported into Hypermesh software for meshing of the vertebrae,nucleus pulposus,annulus fibrosus,and ligaments,creating valid geometric models.After assigning material properties,the final models were imported into ABAQUS software to observe the joint motion range of the C1-C7 cervical vertebrae segments under different conditions,and to analyze the biomechanical characteristics of the annulus fibrosus,nucleus pulposus,endplates,and small joint cartilage of each cervical spine segment. RESULTS AND CONCLUSION:(1)In six different conditions,the joint motion range of the C1 vertebra in the cervical spine models of both normal adolescent and adolescent patient with cervical disc herniation was higher than that of the other vertebrae.Additionally,the joint motion range of each cervical spine segment in normal adolescent was greater than that in adolescent patient with cervical disc herniation.(2)In the cervical spine model of normal adolescent,the maximum stress values in the annulus fibrosus and nucleus pulposus were found on the left side during C2-3 flexion conditions(0.43 MPa and 0.17 MPa,respectively).In the cervical spine model of adolescent patient with cervical disc herniation,the maximum stress values were found on the left side during C7-T1 flexion conditions(0.54 MPa and 0.18 MPa,respectively).(3)In the cervical spine model of normal adolescent,the maximum stress value on the endplate was found on the left side of the upper endplate of C3 during flexion conditions(1.46 MPa).In the model of adolescent patient with cervical disc herniation,the maximum stress value on the endplate was found on the left side of the lower endplate of C7 during flexion conditions(1.32 MPa).(4)In the cervical spine model of normal adolescent,the maximum stress value in the small joint cartilage was found in the C2-3 left rotation conditions(0.98 MPa).In adolescent patient with cervical disc herniation,the stress in the small joint cartilage significantly increased under different conditions,especially in C1-2,with the maximum stress found during left flexion(3.50 MPa).(5)It is concluded that compared to normal adolescent,adolescent patient with cervical disc herniation exhibits altered cervical curvature and a decrease in overall joint motion range in the cervical spine.In adolescent with cervical disc herniation,there is a significant increase in stress on the annulus fibrosus,nucleus pulposus,and endplates in the C7-T1 segment.The stress on the left articular cartilage of the C1-2 is notable.Abnormal cervical curvature may be the primary factor causing these stress changes.
6.Role and mechanism of platelet-derived growth factor BB in repair of growth plate injury
Hongcheng PENG ; Guoxuan PENG ; Anyi LEI ; Yuan LIN ; Hong SUN ; Xu NING ; Xianwen SHANG ; Jin DENG ; Mingzhi HUANG
Chinese Journal of Tissue Engineering Research 2025;29(7):1497-1503
BACKGROUND:In the initial stage of growth plate injury inflammation,platelet-derived growth factor BB promotes the repair of growth plate injury by promoting mesenchymal progenitor cell infiltration,chondrogenesis,osteogenic response,and regulating bone remodeling. OBJECTIVE:To elucidate the action mechanism of platelet-derived growth factor BB after growth plate injury. METHODS:PubMed,VIP,WanFang,and CNKI databases were used as the literature sources.The search terms were"growth plate injury,bone bridge,platelet-derived growth factor BB,repair"in English and Chinese.Finally,66 articles were screened for this review. RESULTS AND CONCLUSION:Growth plate injury experienced early inflammation,vascular reconstruction,fibroossification,structural remodeling and other pathological processes,accompanied by the crosstalk of chondrocytes,vascular endothelial cells,stem cells,osteoblasts,osteoclasts and other cells.Platelet-derived growth factor BB,as an important factor in the early inflammatory response of injury,regulates the injury repair process by mediating a variety of cellular inflammatory responses.Targeting the inflammatory stimulation mediated by platelet-derived growth factor BB may delay the bone bridge formation process by improving the functional activities of osteoclasts,osteoblasts,and chondrocytes,so as to achieve the injury repair of growth plate.Platelet-derived growth factor BB plays an important role in angiogenesis and bone repair tissue formation at the injured site of growth plate and intrachondral bone lengthening function of uninjured growth plate.Inhibition of the coupling effect between angiogenesis initiated by platelet-derived growth factor BB and intrachondral bone formation may achieve the repair of growth plate injury.
7.Geraniin attenuates isoproterenol-induced cardiac hypertrophy by inhibiting inflammation, oxidative stress and cellular apoptosis
Jiaqi DING ; Shenjie ZHANG ; Qi LI ; Boyu XIA ; Jingjing WU ; Xu LU ; Chao HUANG ; Xiaomei YUAN ; Qingsheng YOU
The Korean Journal of Physiology and Pharmacology 2025;29(3):307-319
Geraniin, a polyphenol derived from the fruit peel of Nephelium lappaceum L., has been shown to possess anti-inflammatory and antioxidant properties in the cardiovascular system. The present study explored whether geraniin could protect against an isoproterenol (ISO)-induced cardiac hypertrophy model. Mice in the ISO group received an intraperitoneal injection of ISO (5 mg/kg) once daily for 9 days, and the administration group were injected with ISO after 5 days of treatment with geraniin or spironolactone. Potential therapeutic effects and related mechanisms analysed by anatomical coefficients, histopathology, blood biochemical indices, reverse transcription-PCR and immunoblotting. Geraniin decreased the cardiac pathologic remodeling and myocardial fibrosis induced by ISO, as evidenced by the modifications to anatomical coefficients, as well as the reduction in collagen I/III á1mRNA and protein expression and cross-sectional area in hypertrophic cardiac tissue. In addition, geraniin treatment reduced ISO-induced increase in the mRNA and protein expression levels of interleukin (IL)-6, IL-1β and tumor necrosis factor-α, whereas ISO-induced IL-10 showed the opposite behaviour in hypertrophic cardiac tissue.Further analysis showed that geraniin partially reversed the ISO-induced increase in malondialdehyde and nitric oxide, and the ISO-induced decrease in glutathione, superoxide dismutase and glutathione. Furthermore, it suppressed the ISO-induced cellular apoptosis of hypertrophic cardiac tissue, as evidenced by the decrease in Bcell lymphoma-2 (Bcl-2)-associated X/caspase-3/caspase-9 expression, increase in Bcl-2 expression, and decrease in TdT-mediated dUTP nick-end labeling-positive cells.These findings suggest that geraniin can attenuate ISO-induced cardiac hypertrophy by inhibiting inflammation, oxidative stress and cellular apoptosis.
8.Optimization and Mechanism Exploration of Tusizi Prescription for Ovarian Reserve Function Based on Uniform Design Method
Yuan LI ; Hanqian DU ; Jiashan LI ; Li GUO ; Zehui LI ; Na LIN ; Ying XU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):53-62
ObjectiveTo optimize Tusizi prescription for ovarian reserve function based on the uniform design method combined with in vitro experiments and explore the underlying mechanisms of this prescription. MethodsThe uniform design method was adopted to design a 5-factor 11-level experiment on the water extract of Tusizi prescription. The cell-counting kit-8 (CCK-8) assay was employed to measure the viability of human ovarian granulosa cells (KGN cells) treated with Tusizi prescription extracts 1-11, and multivariate regression analysis was performed to determine the optimal herb ratio in this prescription. The potential targets of active ingredients in the prescription were retrieved from traditional Chinese medicine systems pharmacology database and analysis platform (TCMSP) and encyclopedia of traditional Chinese medicine (ETCM). The common targets shared by Tusizi prescription and diminished ovarian reserve (DOR) were selected and imported into search tool for the retrieval of interacting genes/proteins (STRING) to construct a protein-protein interaction (PPI) network and into gene function annotation database (DAVID) for gene ontology (GO) analysis. The CCK-8 assay was used to measure the viability of ovarian germline stem cells treated with hyperoside. The CCK-8 assay, 5-ethynyl-2'-deoxyuridine (EdU) staining, terminal-deoxynucleoitidyl transferase mediated nick-end labeling (TUNEL), and enzyme-linked immunosorbent assay (ELISA) were employed to examine the proliferation, apoptosis, and estradiol (E2) secretion of KGN cells treated with the water extract 11 of Tusizi prescription (Cuscutae Semen-Lycii Fructus-Dioscoreae Rhizoma-Poria-Nelumbinis Semen 4∶4∶2∶1∶1) and the optimal prescription screened by uniform design. On this basis, the optimal prescription composition for maximizing the effect on ovarian reserve function was determined and preliminary insights into the underlying mechanisms of this prescription were gained. ResultsA total of 147 common targets were obtained from 278 targets of Tusizi prescription and 1 721 targets of DOR. GO analysis revealed 194 biological processes, primarily involving cellular responses to exogenous compound stimuli, negative regulation of apoptotic process, and positive regulation of cell proliferation. It identified 84 cellular components, including cell membrane, mitochondria, and neuronal cell body, as well as 144 molecular functions such as enzyme binding, estrogen response element binding, and nuclear estrogen receptor binding. The multivariate regression analysis revealed that when Tusizi prescription was composed of Cuscutae Semen, Lycii Fructus, Dioscoreae Rhizoma, Poria, and Nelumbinis Semen in a ratio of 27∶30∶17∶12∶14, the water extract of Tusizi prescription had the best effect of enhancing the viability of KGN cells. CCK-8 results showed that compared with the normal group, the hyperoside group demonstrated increased viability of ovarian germline stem cells (P<0.01). The CCK-8, EdU, and ELISA results showed that compared with the normal group, the optimal prescription screened by uniform design and the water extract 11 of Tusizi prescription increased the proliferation and reduced the apoptosis of KGN cells (P<0.05, P<0.01). ELISA results showed that compared with the normal group, the water extract 11 of Tusizi prescription promoted the E2 secretion of KGN cells (P<0.05), while the optimal prescription screened by uniform design had no significant effect on the E2 secretion. ConclusionBoth the water extract 11 of Tusizi prescription (Cuscutae Semen-Lycii Fructus-Dioscoreae Rhizoma-Poria-Nelumbinis Semen 4∶4∶2∶1∶1) and the optimal prescription screened by uniform design (Cuscutae Semen-Lycii Fructus-Dioscoreae Rhizoma-Poria-Nelumbinis Semen 27∶30∶17∶12∶14) can improve the ovarian reserve function, and the former has better effect. Tusizi prescription can modulate biological processes (such as cell proliferation and apoptosis) and molecular functions (such as enzyme binding and estrogen response element binding) through active components like hyperoside to promote the proliferation and E2 secretion and inhibit the apoptosis of KGN cells, thereby protecting the ovarian reserve function.
9.Optimization and Mechanism Exploration of Tusizi Prescription for Ovarian Reserve Function Based on Uniform Design Method
Yuan LI ; Hanqian DU ; Jiashan LI ; Li GUO ; Zehui LI ; Na LIN ; Ying XU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):53-62
ObjectiveTo optimize Tusizi prescription for ovarian reserve function based on the uniform design method combined with in vitro experiments and explore the underlying mechanisms of this prescription. MethodsThe uniform design method was adopted to design a 5-factor 11-level experiment on the water extract of Tusizi prescription. The cell-counting kit-8 (CCK-8) assay was employed to measure the viability of human ovarian granulosa cells (KGN cells) treated with Tusizi prescription extracts 1-11, and multivariate regression analysis was performed to determine the optimal herb ratio in this prescription. The potential targets of active ingredients in the prescription were retrieved from traditional Chinese medicine systems pharmacology database and analysis platform (TCMSP) and encyclopedia of traditional Chinese medicine (ETCM). The common targets shared by Tusizi prescription and diminished ovarian reserve (DOR) were selected and imported into search tool for the retrieval of interacting genes/proteins (STRING) to construct a protein-protein interaction (PPI) network and into gene function annotation database (DAVID) for gene ontology (GO) analysis. The CCK-8 assay was used to measure the viability of ovarian germline stem cells treated with hyperoside. The CCK-8 assay, 5-ethynyl-2'-deoxyuridine (EdU) staining, terminal-deoxynucleoitidyl transferase mediated nick-end labeling (TUNEL), and enzyme-linked immunosorbent assay (ELISA) were employed to examine the proliferation, apoptosis, and estradiol (E2) secretion of KGN cells treated with the water extract 11 of Tusizi prescription (Cuscutae Semen-Lycii Fructus-Dioscoreae Rhizoma-Poria-Nelumbinis Semen 4∶4∶2∶1∶1) and the optimal prescription screened by uniform design. On this basis, the optimal prescription composition for maximizing the effect on ovarian reserve function was determined and preliminary insights into the underlying mechanisms of this prescription were gained. ResultsA total of 147 common targets were obtained from 278 targets of Tusizi prescription and 1 721 targets of DOR. GO analysis revealed 194 biological processes, primarily involving cellular responses to exogenous compound stimuli, negative regulation of apoptotic process, and positive regulation of cell proliferation. It identified 84 cellular components, including cell membrane, mitochondria, and neuronal cell body, as well as 144 molecular functions such as enzyme binding, estrogen response element binding, and nuclear estrogen receptor binding. The multivariate regression analysis revealed that when Tusizi prescription was composed of Cuscutae Semen, Lycii Fructus, Dioscoreae Rhizoma, Poria, and Nelumbinis Semen in a ratio of 27∶30∶17∶12∶14, the water extract of Tusizi prescription had the best effect of enhancing the viability of KGN cells. CCK-8 results showed that compared with the normal group, the hyperoside group demonstrated increased viability of ovarian germline stem cells (P<0.01). The CCK-8, EdU, and ELISA results showed that compared with the normal group, the optimal prescription screened by uniform design and the water extract 11 of Tusizi prescription increased the proliferation and reduced the apoptosis of KGN cells (P<0.05, P<0.01). ELISA results showed that compared with the normal group, the water extract 11 of Tusizi prescription promoted the E2 secretion of KGN cells (P<0.05), while the optimal prescription screened by uniform design had no significant effect on the E2 secretion. ConclusionBoth the water extract 11 of Tusizi prescription (Cuscutae Semen-Lycii Fructus-Dioscoreae Rhizoma-Poria-Nelumbinis Semen 4∶4∶2∶1∶1) and the optimal prescription screened by uniform design (Cuscutae Semen-Lycii Fructus-Dioscoreae Rhizoma-Poria-Nelumbinis Semen 27∶30∶17∶12∶14) can improve the ovarian reserve function, and the former has better effect. Tusizi prescription can modulate biological processes (such as cell proliferation and apoptosis) and molecular functions (such as enzyme binding and estrogen response element binding) through active components like hyperoside to promote the proliferation and E2 secretion and inhibit the apoptosis of KGN cells, thereby protecting the ovarian reserve function.
10.Da Chaihutang for Treatment of Sepsis with Yang Syndrome:A Randomized Controlled Trial
Na HUANG ; Guangmei CHEN ; Xingyu KAO ; Zhen YANG ; Weixian XU ; Kang YUAN ; Junna LEI ; Jingli CHEN ; Mingfeng HE
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):55-63
ObjectiveTo explore the clinical efficacy and safety of Da Chaihutang (DCH) for the treatment of sepsis with Yang syndrome. MethodsA total of 70 patients suffering from sepsis with Yang syndrome were randomly divided into an observation group and a control group, with 35 cases in each group. They both received standard Western medicine treatment. The observation group was additionally given a dose of DCH, which was boiled into 100 mL and taken twice. The control group was additionally given an equal volume and dosage of warm water. The intervention lasted for three days. The 28-day all-cause mortality and the changes in the following indicators before and after intervention were compared between the two groups, including sequential organ failure assessment (SOFA), acute physiology and chronic health evaluation Ⅱ (APACHE Ⅱ) score,white blood cell (WBC),the percentage of neutrophils (NEU%),C-reactive protein (CRP),procalcitonin (PCT),alanine transaminase (ALT),aspartate transaminase (AST),total bilirubin (TBil),creatinine (Cr),blood urea nitrogen (BUN),acute gastrointestinal injury (AGI) grade,gastrointestinal dysfunction score (GDS),serum intestinal fatty acid-binding protein (iFABP), citrulline (CR),platelet (PLT),prothrombin time(PT),activated partial thromboplastin time (APTT),fibrinogen (Fib),international normalized ratio (INR),and D-dimer (D-D). ResultsThere was no significant difference between the two groups regarding 28-day all-cause mortality. After the intervention,SOFA,WBC,PCT,and Cr were significantly decreased, and PLT was significantly increased in the control group (P<0.05). SOFA,APACHE Ⅱ,NEU%,CRP,PCT,ALT,AST,Cr,BUN,AGI grade,GDS,and serum iFABP and CR were significantly improved in the observation group (P<0.05). After the intervention,APACHE Ⅱ,PCT,AGI grade,GDS,and serum iFABP in the observation group were significantly lower than those in the control group ,while CR and PLT were higher (P<0.05,P<0.01). There were significant differences regarding the gap of SOFA,APACHE Ⅱ,AST,TBil,AGI grade,GDS,iFABP,CR, and PLT between the two groups (P<0.05,P<0.01). There were slight differences regarding PT,APTT,Fib,INR,and D-D between the two groups,which were in the clinical normal range. ConclusionOn the basis of Western medicine, DCH helped to reduce sepsis severity and improved multiple organ dysfunction with high clinical efficacy and safety, but further research on its impact on the prognosis of patients with sepsis is still required.

Result Analysis
Print
Save
E-mail