1.Pathogenesis and treatment progress of flap ischemia-reperfusion injury
Bo HE ; Wen CHEN ; Suilu MA ; Zhijun HE ; Yuan SONG ; Jinpeng LI ; Tao LIU ; Xiaotao WEI ; Weiwei WANG ; Jing XIE
Chinese Journal of Tissue Engineering Research 2025;29(6):1230-1238
BACKGROUND:Flap transplantation technique is a commonly used surgical procedure for the treatment of severe tissue defects,but postoperative flap necrosis is easily triggered by ischemia-reperfusion injury.Therefore,it is still an important research topic to improve the survival rate of transplanted flaps. OBJECTIVE:To review the pathogenesis and latest treatment progress of flap ischemia-reperfusion injury. METHODS:CNKI,WanFang Database and PubMed database were searched for relevant literature published from 2014 to 2024.The search terms used were"flap,ischemia-reperfusion injury,inflammatory response,oxidative stress,Ca2+overload,apoptosis,mesenchymal stem cells,platelet-rich plasma,signaling pathways,shock wave,pretreatment"in Chinese and English.After elimination of irrelevant literature,poor quality and obsolete literature,77 documents were finally included for review. RESULTS AND CONCLUSION:Flap ischemia/reperfusion injury may be related to pathological factors such as inflammatory response,oxidative stress response,Ca2+overload,and apoptosis,which can cause apoptosis of vascular endothelial cells,vascular damage and microcirculation disorders in the flap,and eventually lead to flap necrosis.Studies have found that mesenchymal stem cell transplantation,platelet-rich plasma,signaling pathway modulators,shock waves,and pretreatment can alleviate flap ischemia/reperfusion injuries from different aspects and to varying degrees,and reduce the necrosis rate and necrosis area of the grafted flap.Although there are many therapeutic methods for skin flap ischemia/reperfusion injury,a unified and effective therapeutic method has not yet been developed in the clinic,and the advantages and disadvantages of various therapeutic methods have not yet been compared.Most of the studies remain in the stage of animal experiments,rarely involving clinical observations.Therefore,a lot of research is required in the future to gradually move from animal experiments to the clinic in order to better serve the clinic.
2.In situ Analytical Techniques for Membrane Protein Interactions
Zi-Yuan KANG ; Tong YU ; Chao LI ; Xue-Hua ZHANG ; Jun-Hui GUO ; Qi-Chang LI ; Jing-Xing GUO ; Hao XIE
Progress in Biochemistry and Biophysics 2025;52(5):1206-1218
Membrane proteins are integral components of cellular membranes, accounting for approximately 30% of the mammalian proteome and serving as targets for 60% of FDA-approved drugs. They are critical to both physiological functions and disease mechanisms. Their functional protein-protein interactions form the basis for many physiological processes, such as signal transduction, material transport, and cell communication. Membrane protein interactions are characterized by membrane environment dependence, spatial asymmetry, weak interaction strength, high dynamics, and a variety of interaction sites. Therefore, in situ analysis is essential for revealing the structural basis and kinetics of these proteins. This paper introduces currently available in situ analytical techniques for studying membrane protein interactions and evaluates the characteristics of each. These techniques are divided into two categories: label-based techniques (e.g., co-immunoprecipitation, proximity ligation assay, bimolecular fluorescence complementation, resonance energy transfer, and proximity labeling) and label-free techniques (e.g., cryo-electron tomography, in situ cross-linking mass spectrometry, Raman spectroscopy, electron paramagnetic resonance, nuclear magnetic resonance, and structure prediction tools). Each technique is critically assessed in terms of its historical development, strengths, and limitations. Based on the authors’ relevant research, the paper further discusses the key issues and trends in the application of these techniques, providing valuable references for the field of membrane protein research. Label-based techniques rely on molecular tags or antibodies to detect proximity or interactions, offering high specificity and adaptability for dynamic studies. For instance, proximity ligation assay combines the specificity of antibodies with the sensitivity of PCR amplification, while proximity labeling enables spatial mapping of interactomes. Conversely, label-free techniques, such as cryo-electron tomography, provide near-native structural insights, and Raman spectroscopy directly probes molecular interactions without perturbing the membrane environment. Despite advancements, these methods face several universal challenges: (1) indirect detection, relying on proximity or tagged proxies rather than direct interaction measurement; (2) limited capacity for continuous dynamic monitoring in live cells; and (3) potential artificial influences introduced by labeling or sample preparation, which may alter native conformations. Emerging trends emphasize the multimodal integration of complementary techniques to overcome individual limitations. For example, combining in situ cross-linking mass spectrometry with proximity labeling enhances both spatial resolution and interaction coverage, enabling high-throughput subcellular interactome mapping. Similarly, coupling fluorescence resonance energy transfer with nuclear magnetic resonance and artificial intelligence (AI) simulations integrates dynamic structural data, atomic-level details, and predictive modeling for holistic insights. Advances in AI, exemplified by AlphaFold’s ability to predict interaction interfaces, further augment experimental data, accelerating structure-function analyses. Future developments in cryo-electron microscopy, super-resolution imaging, and machine learning are poised to refine spatiotemporal resolution and scalability. In conclusion, in situ analysis of membrane protein interactions remains indispensable for deciphering their roles in health and disease. While current technologies have significantly advanced our understanding, persistent gaps highlight the need for innovative, integrative approaches. By synergizing experimental and computational tools, researchers can achieve multiscale, real-time, and perturbation-free analyses, ultimately unraveling the dynamic complexity of membrane protein networks and driving therapeutic discovery.
3.Simultaneous determination of 13 aromatic amine compounds in workplace air by high performance liquid chromatography
Weimin XIE ; Ruibo MENG ; Zuofei XIE ; Jing YUAN ; Jiaheng HE ; Jiawen HU ; Weifeng RONG
China Occupational Medicine 2025;52(2):182-187
Objective To establish a liquid chromatography method for the simultaneous determination of 13 aromatic amine compounds (AAs) in workplace air. Methods A total of 13 AAs in both vapor and aerosol phases were collected in workplace air using a new GDH-6 sampling tube. Samples were desorbed and eluted with methanol, separated using a Symmetry Shield™ RP18 reversed-phase liquid chromatography column, and detected with a diode array detector. Quantification was performed using an external standard method. Results The linear range of the 13 AAs measured by this method was 0.02-373.60 μg/L with the correlation coefficients greater than 0.999 0. The minimum detection concentration was 0.09-14.37 μg/m3, and the minimum quantitative concentration was 0.31-47.90 μg/m3 (both calculated based on sampling 15.0 L of air and 3.0 mL of elution volume). The average desorption and elution efficiency ranged from 97.46% to 101.23%. The within-run relative standard deviation (RSD) was 0.10%-5.99%, and the between-run RSD was 0.17%-2.71%. Samples could be stably stored in sealed conditions at 2-8 ℃ for more than seven days. Conclusion This method is suitable for the simultaneous determination of 13 AAs in workplace air, including both vapor and aerosol phases.
4.Three-dimensional finite element analysis of lumbar disc herniation under different body positions
Ben-Jing YIN ; Yu LU ; Fu-Tao JI ; Rong-Neng QIU ; Yuan-Yang XIE ; Ge CHEN ; Tian-Li XU ; Chao-Yu BAO ; Ju-Bao LI
China Journal of Orthopaedics and Traumatology 2024;37(6):599-604
Objective To campare biomechanical effects of different postural compression techniques on three-dimensional model of lumbar disc herniation(LDH)by finite element analysis.Methods Lumbar CT image of a 48-year-old female patient with LDH(heighted 163 cm,weighted 53 kg)was collected.Mimics 20.0,Geomagic Studio,Solidwords and other software were used to establish three-dimensional finite element model of LDH on L4,5 segments.Compression techniques under horizon-tal position,30° forward bending and 10° backward extension were simulated respectively.After applying the pressure,the ef-fects of compression techniques under different positions on stress,strain and displacement of various tissues of intervertebral disc and nerve root were observed.Results L4,5 segment finite element model was successfully established,and the model was validated.When compression manipulation was performed on the horizontal position,30° flexion and 10° extension,the annular stress were 0.732,5.929,1.286 MPa,the nucleus pulposus stress were 0.190,1.527,0.295 MPa,and the annular strain were 0.097,0.922 and 0.424,the strain sizes of nucleus pulposus were 0.153,1.222 and 0.282,respectively.The overall displace-ment distance of intervertebral disc on Y direction were-3.707,-18.990,-4.171 mm,and displacement distance of nerve root on Y direction were+7.836,+5.341,+3.859 mm,respectively.The relative displacement distances of nerve root and interverte-bral disc on Y direction were 11.543,24.331 and 8.030 mm,respectively.Conclusion Compression manipulation could make herniated intervertebral disc produce contraction and retraction trend,by increasing the distance between herniated interverte-bral disc and nerve root,to reduce symptoms of nerve compression,to achieve purpose of treatment for patients with LDH,in which the compression manipulation is more effective when the forward flexion is 30°.
5.A phase Ⅱ clinical study of the efficacy and safety of antaitasvir phosphate combined with yiqibuvir for the treatment of chronic hepatitis C in adults
Lai WEI ; Hongxin PIAO ; Jinglan JIN ; Shufen YUAN ; Xuan AN ; Jia SHANG ; Wenhua ZHANG ; Jiabao CHANG ; Tong SUN ; Yujuan GUAN ; Bo NING ; Jing ZHU ; Wentao GUO ; Qingwei HE ; Lin LUO ; Yulei ZHUANG ; Hongming XIE ; Yingjun ZHANG
Chinese Journal of Hepatology 2024;32(7):637-642
Objective:To evaluate the efficacy and safety of antaitasvir phosphate 100 mg or 200 mg combined with yiqibuvir for 12 weeks in patients with various genotypes of chronic hepatitis C, without cirrhosis or compensated stage cirrhosis.Methods:Patients with chronic hepatitis C (without cirrhosis or compensated stage cirrhosis) were randomly assigned to the antaitasvir phosphate 100 mg+yiqibuvir 600 mg group (100 mg group) or the antaitasvir phosphate 200 mg+yiqibuvir 600 mg group (200 mg group) in a 1∶1 ratio. The drugs were continuously administered once a day for 12 weeks and observed for 24 weeks after drug withdrawal. The drug safety profile was assessed concurrently with the observation of the sustained virological response (SVR12) in the two patient groups 12 weeks following the drug cessation. The intention-to-treat concept was used to define as closely as possible a full analysis set, including all randomized cases who received the experimental drug at least once. The safety set was collected from all subjects who received the experimental drug at least once (regardless of whether they participated in the randomization group) in this study. All efficacy endpoints and safety profile data were summarized using descriptive statistics. The primary efficacy endpoint was SVR12. The primary analysis was performed on a full analysis set. The frequency and proportion of cases were calculated in the experimental drug group (antaitasvir phosphate capsules combined with yiqibuvir tablets) that achieved "HCV RNA
6.Damage mechanism of diacetylmorphine on BV-2 cells
Mingren XIE ; Shan QI ; Lei YU ; Xia YUAN ; Jing DU ; Farong YU
Chinese Journal of Forensic Medicine 2024;39(3):304-307,314
Objective To study the damage mechanism of diacetylmorphine(DAM)on BV-2cells.Methods BV-2 cells with the ability to divide and proliferate were selected as experimental objects,BV-2 cells were treated with 30,60 and 120 mg/L DAM,respectively.The cells were cu?tured for 4,8,16,32 and 48 h.The damage degree and proliferation inhibition rate of BV-2 cells were detected by trypan blue and thiazole blue(MTT)method.The effects of DAM on BV-2 cell cycle and apoptosis were detected with flow cytometry.The c-Fos,Bax,caspase-9,BDNF,HSP-70 and TrkB protein level in BV-2 cells were detected by ELISA.Results Trypan blue and MTT detection showed that the death cells increased significantly with the increase of DAM concentration and prolonged action time and the inhibition rate of BV-2 cells was significantly higher than that of the control group.Cell cycle showed that the number of G0/G1 phase cells in DAM group was significantly increased,the number of G2 phase cells was significantly decreased,and the apoptosis rate was increased.ELISA showed that the protein levels of caspase-9,c-Fos and Bax in DAM groups were significantly higher than those in the control group.On the contrary,BDNF,HSP-70 and TrkB protein levels were significantly lower than those in the control group.Conclusion The damage mechanism of DAM on BV-2 cells is related to up-regulating damage protein level,down-regulating protection protein level,damaging cell membrane structure,inhibiting cell division,leading to cell apoptosis and death.
7.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
8.Application of Pentacam TNP in calculating the intraocular lens power after corneal refractive surgery
Xinyi ZANG ; Shilan MAO ; Jin XIE ; Xiaomin LIU ; Dewei LI ; Jing YUAN ; Yunhai DAI
International Eye Science 2024;24(4):646-650
AIM: To assess the accuracy of predicting intraocular lens(IOL)power after myopic refractive surgery using the Pentacam system's true net power(TNP)in the 3 mm zone combined with the SRK/T formula [i.e. TNP 3 mm(SRK/T)].METHODS: Retrospective study. This study enrolled 35 cases(50 eyes)of patients undergoing cataract surgery after laser assisted in situ keratomileusis(LASIK)or photorefractive keratectomy(PRK)from July 2019 to December 2021. Preoperatively, IOL power of 50 eyes, 34 eyes and 41 eyes was calculated by TNP 3 mm(SRK/T), Barrett True-K and Olsen 2 formulas, respectively, with at least 2 formulas used to calculate IOL power for each patient. The actual diopter was recorded 3 mo postoperatively. Prediction errors(PE)of IOL power were compared among the three calculation methods, and the proportion of eyes with PE within ±0.5 D and ±1.0 D was analyzed.RESULTS: The PE at 3 mo postoperatively for TNP 3 mm(SRK/T), Barrett True-K, and Olsen 2 was -0.02±0.63, -0.54±0.80, and 0.25±0.80 D, respectively(P<0.001). The proportions of PE within ±0.5 D were 66%(33/50), 44%(15/34)and 37%(15/41), respectively(P<0.05); the proportions of PE within ±1.0 D were 88%(44/50), 71%(24/34)and 80%(33/41), respectively(P>0.05).CONCLUSION: The Pentacam TNP 3 mm(SRK/T)method is simple to operate and provides accurate calculation of IOL power after corneal refractive surgery.
9.Proteomic analysis and validation of DNA repair regulation in the process of hepatocellular carcinoma recurrence
Kai CHANG ; Yanyan WANG ; Zhongyong JIANG ; Wei SUN ; Chenxia LIU ; Wanlin NA ; Hongxuan XU ; Jing XIE ; Yuan LIU ; Min CHEN
Journal of Clinical Hepatology 2024;40(2):319-326
ObjectiveTo investigate the role and mechanism of DNA repair regulation in the process of hepatocellular carcinoma (HCC) recurrence. MethodsHCC tissue samples were collected from the patients with recurrence within two years or the patients with a good prognosis after 5 years, and the Tandem Mass Tag-labeled quantification proteomic study was used to analyze the differentially expressed proteins enriched in the four pathways of DNA replication, mismatch repair, base excision repair, and nucleotide excision repair, and the regulatory pathways and targets that play a key role in the process of HCC recurrence were analyzed to predict the possible regulatory mechanisms. The independent samples t-test was used for comparison of continuous data between two groups; a one-way analysis of variance was used for comparison between multiple groups, and the least significant difference t-test was used for further comparison between two groups. ResultsFor the eukaryotic replication complex pathway, there were significant reductions in the protein expression levels of MCM2 (P=0.018), MCM3 (P=0.047), MCM4 (P=0.014), MCM5 (P=0.008), MCM6 (P=0.006), MCM7 (P=0.007), PCNA (P=0.019), RFC4 (P=0.002), RFC5 (P<0.001), and LIG1 (P=0.042); for the nucleotide excision repair pathway, there were significant reductions in the protein expression levels of PCNA (P=0.019), RFC4 (P=0.002), RFC5 (P<0.001), and LIG1 (P=0.042); for the base excision repair pathway, there were significant reductions in the protein expression levels of PCNA (P=0.019) and LIG1 (P=0.042) in the HCC recurrence group; for the mismatch repair pathway, there were significant reductions in the protein expression levels of MSH2 (P=0.026), MSH6 (P=0.006), RFC4 (P=0.002), RFC5 (P<0.001), PCNA (P=0.019), and LIG1 (P=0.042) in recurrent HCC tissue. The differentially expressed proteins were involved in the important components of MCM complex, DNA polymerase complex, ligase LIG1, long patch base shear repair complex (long patch BER), and DNA mismatch repair protein complex. The clinical sample validation analysis of important differentially expressed proteins regulated by DNA repair showed that except for MCM6 with a trend of reduction, the recurrence group also had significant reductions in the relative protein expression levels of MCM5 (P=0.008), MCM7 (P=0.007), RCF4 (P=0.002), RCF5 (P<0.001), and MSH6 (P=0.006). ConclusionThere are significant reductions or deletions of multiple complex protein components in the process of DNA repair during HCC recurrence.
10.Research status of quercetin-mediated MAPK signaling pathway in prevention and treatment of osteoporosis
Ke-Xin YUAN ; Xing-Wen XIE ; Ding-Peng LI ; Yi-Sheng JING ; Wei-Wei HUANG ; Xue-Tao WANG ; Hao-Dong YANG ; Wen YAN ; Yong-Wu MA
The Chinese Journal of Clinical Pharmacology 2024;40(9):1375-1379
Quercetin can mediate the activation of mitogen-activated protein kinase(MAPK)signaling pathways to prevent osteoporosis(OP).This paper comprehensively discusses the interrelationship between MAPK and osteoporosis-related cells based on the latest domestic and international research.Additionally,it elucidates the research progress of quercetin in mediating the MAPK signaling pathway for OP prevention.The aim is to provide an effective foundation for the clinical prevention and treatment of OP and the in-depth development of quercetin.

Result Analysis
Print
Save
E-mail