1.Clinical and Mechanism of Modified Xiaoyaosan and Its Effective Components in Treatment of Thyroid Diseases: A Review
Shanshan LI ; Yu FU ; Dandan WEI ; Fei WANG ; Mengjiao XU ; Ting WANG ; Shuxun YAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(6):302-310
Thyroid diseases are common clinical endocrine disorders, and their pathogenesis is generally considered to be closely related to genetic predisposition factors, immune system disorders, hormone levels, etc. Xiaoyaosan is widely used in the treatment of various thyroid diseases with excellent effects. This study summarized the relevant literature on the treatment of thyroid diseases with modified Xiaoyaosan prescriptions and their active ingredients from aspects such as theoretical analysis, clinical research, and mechanism research. Theoretical analysis revealed that Xiaoyaosan could not only disperse stagnated liver qi but also replenish deficient spleen Qi, which was consistent with the etiology and pathogenesis of thyroid diseases. Clinical studies found that Xiaoyaosan and its modified prescriptions could be widely used in the treatment of multiple thyroid diseases, such as hyperthyroidism, Hashimoto's thyroiditis, and thyroid nodules. Both the use of modified Xiaoyaosan alone and in combination with medications such as methimazole, propylthiouracil, and euthyrox could effectively improve patients' clinical symptoms. In the mechanism research, this study discovered that the whole formula of Xiaoyaosan and its modified prescriptions could inhibit inflammatory reactions, regulate immune balance, and delay liver damage during the treatment of thyroid diseases. The research on Xiaoyaosan for treating thyroid diseases mainly focused on thyroid cancer, autoimmune thyroiditis, hyperthyroidism, and hypothyroidism. The mechanisms of action mainly involved promoting cell apoptosis, inhibiting cell proliferation and migration, arresting the cell cycle, and regulating thyroid hormone levels. In conclusion, this study systematically combs and summarizes the research status of Xiaoyaosan in treating thyroid diseases through literature retrieval, aiming to provide new perspectives and new ideas for the prevention and treatment of thyroid diseases with traditional Chinese medicine.
2.Alleviation of hypoxia/reoxygenation injury in HL-1 cells by ginsenoside Rg_1 via regulating mitochondrial fusion based on Notch1 signaling pathway.
Hui-Yu ZHANG ; Xiao-Shan CUI ; Yuan-Yuan CHEN ; Gao-Jie XIN ; Ce CAO ; Zi-Xin LIU ; Shu-Juan XU ; Jia-Ming GAO ; Hao GUO ; Jian-Hua FU
China Journal of Chinese Materia Medica 2025;50(10):2711-2718
This paper explored the specific mechanism of ginsenoside Rg_1 in regulating mitochondrial fusion through the neurogenic gene Notch homologous protein 1(Notch1) pathway to alleviate hypoxia/reoxygenation(H/R) injury in HL-1 cells. The relative viability of HL-1 cells after six hours of hypoxia and two hours of reoxygenation was detected by cell counting kit-8(CCK-8). The lactate dehydrogenase(LDH) activity in the cell supernatant was detected by the lactate substrate method. The content of adenosine triphosphate(ATP) was detected by the luciferin method. Fluorescence probes were used to detect intracellular reactive oxygen species(Cyto-ROS) levels and mitochondrial membrane potential(ΔΨ_m). Mito-Tracker and Actin were co-imaged to detect the number of mitochondria in cells. Fluorescence quantitative polymerase chain reaction and Western blot were used to detect the mRNA and protein expression levels of Notch1, mitochondrial fusion protein 2(Mfn2), and mitochondrial fusion protein 1(Mfn1). The results showed that compared with that of the control group, the cell activity of the model group decreased, and the LDH released into the cell culture supernatant increased. The level of Cyto-ROS increased, and the content of ATP decreased. Compared with that of the model group, the cell activity of the ginsenoside Rg_1 group increased, and the LDH released into the cell culture supernatant decreased. The level of Cyto-ROS decreased, and the ATP content increased. Ginsenoside Rg_1 elevated ΔΨ_m and increased mitochondrial quantity in HL-1 cells with H/R injury and had good protection for mitochondria. After H/R injury, the mRNA and protein expression levels of Notch1 and Mfn1 decreased, while the mRNA and protein expression levels of Mfn2 increased. Ginsenoside Rg_1 increased the mRNA and protein levels of Notch1 and Mfn1, and decreased the mRNA and protein levels of Mfn2. Silencing Notch1 inhibited the action of ginsenoside Rg_1, decreased the mRNA and protein levels of Notch1 and Mfn1, and increased the mRNA and protein levels of Mfn2. In summary, ginsenoside Rg_1 regulated mitochondrial fusion through the Notch1 pathway to alleviate H/R injury in HL-1 cells.
Ginsenosides/pharmacology*
;
Receptor, Notch1/genetics*
;
Signal Transduction/drug effects*
;
Mice
;
Animals
;
Mitochondrial Dynamics/drug effects*
;
Mitochondria/metabolism*
;
Cell Line
;
Reactive Oxygen Species/metabolism*
;
Oxygen/metabolism*
;
Cell Hypoxia/drug effects*
;
Cell Survival/drug effects*
;
Membrane Potential, Mitochondrial/drug effects*
;
Humans
3.Research progress on the manufacturing technology of hollow microneedles.
Shengshuo ZHOU ; Huajian ZHOU ; Xiaoyu DU ; Ziye YU ; Tongle XU ; Shun ZHAO ; Peiqiang SU ; Leian ZHANG ; Guangyang FU ; Xuelei LIU
Journal of Biomedical Engineering 2025;42(2):423-430
Drug administration via hollow microneedles (HMN) have the advantages of painlessness, avoidance of first-pass effect, capability of sustained infusion, and no need for professional personnel operation. In addition, HMN can also be applied in the fields of body fluid extraction and biosensors, showing broad application prospects. However, traditional manufacturing technologies cannot meet the demand for low-cost mass production of HMN, limiting its widespread application. This paper reviews the main manufacturing technologies used for HMN in recent years, which include photolithography and etching, laser etching, sputtering and electroplating, micro-molding, three-dimensional (3D) printing and drawing lithography. It further analyzes the characteristics and limitations of existing manufacturing technologies and points out that the combination of various manufacturing technologies can improve production efficiency to a certain extent. In addition, this paper looks forward to the future trends of HMN manufacturing technology and proposes possible directions for its development. In conclusion, it is expected that this review can provide new ideas and references for follow-up research.
Printing, Three-Dimensional
;
Needles
;
Humans
;
Drug Delivery Systems/methods*
;
Equipment Design
;
Microinjections/methods*
4.Single-incision laparoscopic totally extraperitoneal retrieval of retroperitoneal vas deferens in vasovasostomy for obstructive azoospermia patients postchildhood bilateral herniorrhaphy.
Chen-Wang ZHANG ; Wei-Dong WU ; Jun-Wei XU ; Jing-Peng ZHAO ; Er-Lei ZHI ; Yu-Hua HUANG ; Chen-Cheng YAO ; Fu-Jun ZHAO ; Zheng LI ; Peng LI
Asian Journal of Andrology 2025;27(1):137-138
5.The Enhancing Effects and Underlying Mechanism of Ionizing Radiation on Adipogenic Differentiation of Mesenchymal Stem Cells via Regulating Oxidative Stress Pathway.
Fu-Hao YU ; Bo-Feng YIN ; Pei-Lin LI ; Xiao-Tong LI ; Jia-Yi TIAN ; Run-Xiang XU ; Jie TANG ; Xiao-Yu ZHANG ; Wen-Jing ZHANG ; Heng ZHU ; Li DING
Journal of Experimental Hematology 2025;33(1):246-254
OBJECTIVE:
To investigate the effects and underlying mechanism of ionizing radiation on the adipogenic of mesenchymal stem cells (MSCs).
METHODS:
Mouse MSCs were cultured in vitro and treated with 2 Gy and 6 Gy radiation with 60Co, and the radiation dose rate was 0.98 Gy/min. Bulk RNA-seq was performed on control and irradiated MSCs. The changes of adipogenic differentiation and oxidative stress pathways of MSC were revealed by bioinformatics analysis. Oil Red O staining was used to detect the adipogenic differentiation ability of MSCs in vitro, and real-time fluorescence quantitative PCR (qPCR) was used to detect the expression differences of key regulatory factors Cebpa, Lpl and Pparg after radiation treatment. At the same time, qPCR and Western blot were used to detect the effect of inhibition of Nrf2, a key factor of antioxidant stress pathway, on the expression of key regulatory factors of adipogenesis. Moreover, the species conservation of the irradiation response of human bone marrow MSCs and mouse MSC was determined by qPCR.
RESULTS:
Bulk RNA-seq suggested that ionizing radiation promotes adipogenic differentiation of MSCs and up-regulation of oxidative stress-related genes and pathways. The results of Oil Red O staining and qPCR showed that ionizing radiation promoted the adipogenesis of MSCs, with high expression of Cebpa, Lpl and Pparg, as well as oxidative stress-related gene Nrf2. Nrf2 pathway inhibitors could further enhance the adipogenesis of MSCs in bone marrow after radiation. Notably, the similar regulation of oxidative pathways and enhanced adipogenesis post irradiation were observed in human bone marrow MSCs. In addition, irradiation exposure led to up-regulated mRNA expression of interleukin-6 and down-regulated mRNA expression of colony stimulating factor 2 in human bone marrow MSCs.
CONCLUSION
Ionizing radiation promotes adipogenesis of MSCs in mice, and oxidative stress pathway participates in this effect, blocking Nrf2 further promotes the adipogenesis of MSCs. Additionally, irradiation activates oxidative pathways and promotes adipogenic differentiation of human bone marrow MSCs.
Mesenchymal Stem Cells/cytology*
;
Oxidative Stress/radiation effects*
;
Animals
;
Adipogenesis/radiation effects*
;
Mice
;
Radiation, Ionizing
;
Cell Differentiation/radiation effects*
;
Humans
;
NF-E2-Related Factor 2/metabolism*
;
PPAR gamma
;
Cells, Cultured
6.Establishment and Application of an in Vitro Cellular Model of Adipogenic Differentiation of Bone Marrow Mesenchymal Stem Cells with Serum Injury in aGVHD Mouse.
Run-Xiang XU ; Pei-Lin LI ; Jia-Yi TIAN ; Jie TANG ; Bo-Feng YIN ; Fu-Hao YU ; Fei-Yan WANG ; Xiao-Tong LI ; Xiao-Yu ZHANG ; Wen-Rong XIA ; Heng ZHU ; Li DING
Journal of Experimental Hematology 2025;33(1):255-261
OBJECTIVE:
To establish an in vitro cell model simulating acute graft-versus-host disease (aGVHD) bone marrow microenvironment injury with the advantage of mouse serum of aGVHD model and explore the effect of serum of aGVHD mouse on the adipogenic differentiation ability of mesenchymal stem cells (MSCs).
METHODS:
The 6-8-week-old C57BL/6N female mice and BALB/c female mice were used as the donor and recipient mice of the aGVHD model, respectively. Bone marrow transplantation (BMT) mouse model (n=20) was established by being injected with bone marrow cells (1×107 per mouse) from donor mice within 4-6 hours after receiving a lethal dose (8.0 Gy, 72.76 cGy/min) of γ ray general irradiation. A mouse model of aGVHD (n=20) was established by infusing a total of 0.4 ml of a mixture of donor mouse-derived bone marrow cells (1×107 per mouse) and spleen lymphocytes (2×106 per mouse). The blood was removed from the eyeballs and the mouse serum was aspirated on the 7th day after modeling. Bone marrow-derived MSCs were isolated from 1-week-old C57BL/6N male mice and incubated with 2%, 5% and 10% BMT mouse serum and aGVHD mouse serum in the medium, respectively. The effect of serum in the two groups on the in vitro adipogenic differentiation ability of mouse MSCs was detected by Oil Red O staining. The expression levels of related proteins PPARγ and CEBPα were detected by Western blot. The expression differences of key adipogenic transcription factors including PPARγ, CEBPα, FABP4 and LPL were determined by real-time quantitative PCR (RT-qPCR).
RESULTS:
An in vitro cell model simulating the damage of bone marrow microenvironment in mice with aGVHD was successfully established. Oil Red O staining showed that the number of orange-red fatty droplets was significantly reduced and the adipogenic differentiation ability of MSC was impaired at aGVHD serum concentration of 10% compared with BMT serum. Western blot experiments showed that adipogenesis-related proteins PPARγ and CEBPα expressed in MSCs were down-regulated. Further RT-qPCR assay showed that the production of PPARγ, CEBPα, FABP4 and LPL, the key transcription factors for adipogenic differentiation of MSC, were significantly reduced.
CONCLUSION
The adipogenic differentiation capacity of MSCs is inhibited by aGVHD mouse serum.
Animals
;
Mesenchymal Stem Cells/cytology*
;
Mice
;
Mice, Inbred BALB C
;
Mice, Inbred C57BL
;
Adipogenesis
;
Female
;
Cell Differentiation
;
Graft vs Host Disease/blood*
;
Bone Marrow Cells/cytology*
;
PPAR gamma/metabolism*
;
Disease Models, Animal
;
CCAAT-Enhancer-Binding Protein-alpha/metabolism*
7.Preparation and Evaluation of Clinical-Grade Human Umbilical Cord-Derived Mesenchymal Stem Cells with High Expression of Hematopoietic Supporting Factors.
Jie TANG ; Pei-Lin LI ; Xiao-Yu ZHANG ; Xiao-Tong LI ; Fu-Hao YU ; Jia-Yi TIAN ; Run-Xiang XU ; Bo-Feng YIN ; Li DING ; Heng ZHU
Journal of Experimental Hematology 2025;33(3):892-898
OBJECTIVE:
To prepare clinical-grade human umbilical cord-derived mesenchymal stem cells (hUC-MSC) with high expression of hematopoietic supporting factors and evaluate their stem cell characteristics.
METHODS:
Fetal umbilical cord tissues were collected from healthy postpartum women during full-term cesarean section. Wharton's jelly was mechanically separated and hUC-MSCs were obtained by explant culture method and enzyme digestion method in an animal serum-free culture system with addition of human platelet lysate. The phenotypic characteristics of hUC-MSCs obtained by two methods were detected by flow cytometry. The differences in proliferation ability between the two groups of hUC-MSCs were identified through CCK-8 assay and colony forming unit-fibroblast (CFU-F) assay. The differences in multilineage differentiation potential between the two groups of hUC-MSCs were identified through induction of adipogenic, osteogenic, and chondrogenic differentiation. The mRNA expression levels of hematopoietic supporting factors such as SCF, IL-3, CXCL12, VCAM1 and ANGPT1 in the two groups of hUC-MSCs were identified by real-time fluorescence quantiative PCR(RT-qPCR).
RESULTS:
The results of flow cytometry showed that hUC-MSCs obtained by the two methods both expressed high levels of CD73, CD90 and CD105, while lowly expressed CD31, CD45 and HLA-DR. The results of CCK-8 and CFU-F assay showed that the proliferation ability of hUC-MSCs obtained by explant culture method was better than those obtained by enzyme digestion method. The results of the triple lineage differentiation experiment showed that there was no significant difference in multilineage differentiation potential between the two grous of hUC-MSCs. The results of RT-qPCR showed that the mRNA expression levels of hematopoietic supporting factors SCF, IL-3, CXCL12, VCAM1 and ANGPT1 in hUC-MSCs obtained by explant cultrue method were higher than those obtained by enzyme digestion method.
CONCLUSION
Clinical-grade hUC-MSCs with high expression levels of hematopoietic supporting factors were successfully cultured in an animal serum-free culture system.
Humans
;
Mesenchymal Stem Cells/metabolism*
;
Umbilical Cord/cytology*
;
Cell Differentiation
;
Female
;
Cell Proliferation
;
Cells, Cultured
;
Chemokine CXCL12/metabolism*
;
Angiopoietin-1/metabolism*
;
Vascular Cell Adhesion Molecule-1/metabolism*
;
Stem Cell Factor/metabolism*
;
Flow Cytometry
;
Pregnancy
8.Brain function and connection in patients with refractory overactive bladder and healthy population: Analysis based on resting-state functional MRI.
Yu-Wei ZHANG ; Si-Yi FU ; Yu-Min LIU ; Hui-Hui SONG ; Peng JIANG ; Jia XU ; Bin HU
National Journal of Andrology 2025;31(1):39-44
OBJECTIVE:
To investigate the characteristics of central nervous system regulation in patients with refractory overactive bladder (rOAB) using resting-state functional magnetic resonance imaging (rs-fMRI), and to analyze the differences in brain function and connection between the patients and healthy population.
METHODS:
From May 1 to November 30, 2024, we performed rs-fMRI for 47 rOAB patients and another 47 matched healthy controls, documented relevant clinical data from all the participants and obtained their Overactive Bladder Symptom Scores (OABSS) and Overactive Bladder Questionnaire (OAB-Q) scores. Based on rs-fMRI, we compared the results of Independent Component Analysis (ICA), amplitude of low-frequency fluctuations (ALFF), fractional amplitude of low-frequency fluctuations (fALFF), regional homogeneity (ReHo) and degree centrality (DC) between the rOAB patients and healthy controls.
RESULTS:
The rOAB patients, in comparison with the healthy controls, showed dramatically higher daytime urination frequency (11.64 ± 3.85) vs (5.76 ± 0.91), nighttime urination frequency (3.72 ± 1.64) vs (0.31 ± 0.47), OABSS (8.22 ± 2.21) vs (0.64±0.78), OAB-Q1 score (20.85 ± 5.28) vs (6.78 ± 1.04), and OAB-Q2 score (45.04 ± 12.11) vs (14.51 ± 1.66) (all P<0.01). No statistically significant differences were observed in the results of ICA and ALFF between the right superior frontal and right middle frontal regions in the rOAB patients (P>0.05), but fALFF, ReHo and DC were significantly decreased in the patients compared with those in the healthy controls (P<0.01).
CONCLUSION
Compared with healthy population, the functions and connection of the frontal superior right and frontal middle right brain regions in rOAB patients are significantly down-regulated, which may serve as new therapeutic targets.
Humans
;
Urinary Bladder, Overactive/physiopathology*
;
Magnetic Resonance Imaging
;
Brain/physiopathology*
;
Female
;
Male
;
Adult
;
Surveys and Questionnaires
;
Case-Control Studies
;
Middle Aged
;
Rest
;
Brain Mapping
9.Influencing factors of lower urinary tract symptoms in patients after radical prostatectomy and nursing strategy.
Na YU ; Song XU ; Hao-Wei HE ; Dian FU ; Tian-Yi SHEN ; Meng ZHANG
National Journal of Andrology 2025;31(9):818-822
OBJECTIVE:
This study aims to analyze the influence factors of lower urinary tract symptoms (LUTS) in patients receiving radical prostatectomy for prostate cancer, and to explore effective nursing strategy in order to provide a theoretical basis for improving the postoperative quality of life of patients.
METHODS:
A retrospective study was conducted on 103 elderly male patients who underwent radical prostatectomy for prostate cancer in the Department of Urology at General Hospital of Eastern Theater Command from August 2022 to August 2024. The patients were categorized into two groups based on whether LUTS occurred. Demographic and clinical characteristics, perioperative parameters, follow-up data, and participation in pelvic floor muscle training were analyzed to identify risk factors associated with postoperative LUTS.
RESULTS:
The incidence of postoperative LUTS in the patients with LUTS before the operation was significantly higher than that in the patients without LUTS before the operation (68.42% vs 32.61%, P=0.001). Additionally, the use of larger catheters (22F) was closely associated with an increased incidence of postoperative LUTS(P<0.01). Pelvic floor exercises demonstrated a significant protective effect, with patients who engaged in pelvic floor exercises exhibiting a lower incidence of postoperative LUTS (38.60% vs 60.87%, P=0.040). Regression analysis further revealed that pelvic floor exercises was the protective factor for postoperative LUTS (OR=0.215, 95%CI: 0.091-0.508, P<0.01).
CONCLUSION
Preoperative LUTS and catheter size are significant risk factors for the occurrence of postoperative LUTS following radical prostatectomy. Pelvic floor muscle exercise after surgery has a protective effect. Postoperative personalized nursing interventions are necessary for different patients to achieve optimal recovery outcomes.
Humans
;
Male
;
Prostatectomy/adverse effects*
;
Retrospective Studies
;
Lower Urinary Tract Symptoms/nursing*
;
Aged
;
Risk Factors
;
Quality of Life
;
Pelvic Floor
;
Prostatic Neoplasms/surgery*
;
Postoperative Complications/prevention & control*
;
Exercise Therapy
;
Middle Aged
10.Development and validation of a clinical automatic diagnosis system based on diagnostic criteria for temporomandibular disorders.
Yuanyuan FANG ; Fan XU ; Jie LEI ; Hao ZHANG ; Wenyu ZHANG ; Yu SUN ; Hongxin WU ; Kaiyuan FU ; Weiyu MAO
Journal of Peking University(Health Sciences) 2025;57(1):192-201
OBJECTIVE:
To develop a clinical automated diagnostic system for temporomandibular disorders (TMD) based on the diagnostic criteria for TMD (DC/TMD) to assist dentists in making rapid and accurate clinical diagnosis of TMD.
METHODS:
Clinical and imaging data of 354 patients, who visited the Center for TMD & Orofacial Pain at Peking University Hospital of Stomatology from September 2023 to January 2024, were retrospectively collected. The study developed a clinical automated diagnostic system for TMD using the DC/TMD, built on the. NET Framework platform with branching statements as its internal structure. Further validation of the system on consistency and diagnostic efficacy compared with DC/TMD were also explored. Diagnostic efficacy of the TMD clinical automated diagnostic system for degenerative joint diseases, disc displacement with reduction, disc displacements without reduction with limited mouth opening and disc displacement without reduction without limited mouth opening was evaluated and compared with a specialist in the field of TMD. Accuracy, precision, specificity and the Kappa value were assessed between the TMD clinical automated diagnostic system and the specialist.
RESULTS:
Diagnoses for various TMD subtypes, including pain-related TMD (arthralgia, myalgia, headache attributed to TMD) and intra-articular TMD (disc displacement with reduction, disc displacement with reduction with intermittent locking, disc displacement without reduction with limited opening, disc displacement without reduction without limited opening, degenerative joint disease and subluxation), using the TMD clinical automated diagnostic system were completely identical to those obtained by the TMD specialist based on DC/TMD. Both the system and the expert showed low sensitivity for diagnosing degenerative joint disease (0.24 and 0.37, respectively), but high specificity (0.96). Both methods achieved high accuracy (> 0.9) for diagnosing disc displacements with reduction and disc displacements without reduction with limited mouth opening. The sensitivity for diagnosing disc displacement without reduction without limited mouth opening was only 0.59 using the automated system, lower than the expert (0.87), while both had high specificity (0.92). The Kappa values for most TMD subtypes were close to 1, except the disc displacement without reduction without limited mouth opening, which had a Kappa value of 0.68.
CONCLUSION
This study developed and validated a reliable clinical automated diagnostic system for TMD based on DC/TMD. The system is designed to facilitate the rapid and accurate diagnosis and classification of TMD, and is expected to be an important tool in clinical scenarios.
Humans
;
Temporomandibular Joint Disorders/diagnosis*
;
Retrospective Studies
;
Male
;
Female
;
Adult
;
Middle Aged
;
Facial Pain/diagnosis*
;
Diagnosis, Computer-Assisted/methods*
;
Sensitivity and Specificity
;
Young Adult

Result Analysis
Print
Save
E-mail