1.Staged Characteristics of Mitochondrial Energy Metabolism in Chronic Heart Failure with Heart-Yang Deficiency Syndrome and Prescription Intervention from Theory of Reinforcing Yang
Zizheng WU ; Xing CHEN ; Lichong MENG ; Yao ZHANG ; Peng LUO ; Jiahao YE ; Kun LIAN ; Siyuan HU ; Zhixi HU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):129-138
Chronic heart failure (CHF) is a complex clinical syndrome caused by ventricular dysfunction, with mitochondrial energy metabolism disorder being a critical factor in disease progression. Heart-Yang deficiency syndrome, as the core pathogenesis of CHF, persists throughout the disease course. Insufficiency of heart-Yang leads to weakened warming and propelling functions, resulting in the accumulation of phlegm-fluid, blood stasis, and dampness. This eventually causes Qi stagnation with phlegm obstruction and blood stasis with water retention, forming a vicious cycle that exacerbates disease progression. According to the theory of reinforcing Yang, the clinical experience of the traditional Chinese medicine (TCM) master Tang Zuxuan in treating CHF with heart-Yang deficiency syndrome, and achievements from molecular biological studies, this study innovatively proposes an integrated research framework of "TCM syndrome differentiation and staging-mitochondrial metabolism mechanisms-intervention with Yang-reinforcing prescriptions" which is characterized by the integration of traditional Chinese and Western medicine. Heart-Yang deficiency syndrome is classified into mild (Stage Ⅰ-Ⅱ), severe (Stage Ⅲ), and critical (Stage Ⅳ) stages. The study elucidates the precise correlations between the pathogenesis of each stage and mitochondrial metabolism disorders from theoretical, pathophysiological, and therapeutic perspectives. The mild stage is characterized by impaired biogenesis and substrate-utilization imbalance, corresponding to heart-Yang deficiency and phlegm-fluid aggregation. Linggui Zhugantang and similar prescriptions can significantly improve the expression of peroxisome proliferator-activated receptor gamma co-activator-1α(PGC-1α)/silent information regulator 2 homolog 1 (SIRT1) and ATPase activity. The severe stage centers on oxidative stress and structural damage, reflecting Yang deficiency with water overflow and phlegm-blood stasis intermingling. At this stage, Zhenwu Tang and Qiangxin Tang can effectively mitigate oxidative stress damage, increase adenosine triphosphate (ATP) content, and repair mitochondrial structure. The critical stage arises from calcium overload and mitochondrial disintegration, leading to the collapse of Yin-Yang equilibrium. At this stage, Yang-restoring and crisis-resolving prescriptions such as Fuling Sini Tang and Qili Qiangxin capsules can inhibit abnormal opening of the mitochondrial permeability transition pore (MPTP), reduce cardiomyocyte apoptosis rate, and protect mitochondrial function. By summarizing the characteristics of mitochondrial energy metabolism disorders at different stages of CHF, this study explores the application of the theory of reinforcing Yang in treating heart-Yang deficiency syndrome and provides new insights for the clinical diagnosis and treatment of CHF.
2.Danhong Injection Regulates Ventricular Remodeling in Rat Model of Chronic Heart Failure with Heart-Blood Stasis Syndrome via p38 MAPK/NF-κB Signaling Pathway
Zizheng WU ; Xing CHEN ; Jiahao YE ; Lichong MENG ; Yao ZHANG ; Junyu ZHANG ; Zhixi HU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):149-159
ObjectiveTo explore the mechanism of ventricular remodeling mediated by the p38 mitogen-activated protein kinase (MAPK)/nuclear factor kappa B (NF-κB) signaling pathway in the rat model of chronic heart failure (CHF) with heart-blood stasis syndrome, as well as the intervention effect of Danhong injection. MethodsIn vivo experiment: SPF-grade male SD rats were assigned via the random number table method into 4 groups: Sham operation, model, captopril (8.8 mg·kg-1), and Danhong injection (6.0 mL·kg-1). The model of CHF with heart-blood stasis syndrome was established by abdominal aortic constriction, and the sham operation group only underwent laparotomy without constriction. All the groups were treated continuously for 15 days. The tongue color of rats was observed. Echocardiography, hemorheology, heart mass index (HMI), and left ventricular mass index (LVMI) were measured. Hematoxylin-eosin (HE) staining and Masson staining were performed to observe the pathological and fibrotic changes of the myocardial tissue. Enzyme-linked immunosorbent assay (ELISA) was employed to quantify the levels of N-terminal pro-B-type natriuretic peptide (NT-proBNP), interleukin-6 (IL-6), angiotensin Ⅱ (AngⅡ), tumor necrosis factor-α (TNF-α), and Creactive protein (CRP) in the serum, as well as the levels of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) in the myocardial tissue. Western blot was used to quantify the protein levels of p-p38 MAPK/p38 MAPK and p-NF-κB p65/NF-κB p65 in the myocardial tissue. In vitro experiment: H9C2 cardiomyocytes were treated with 1×10-6 mol·L-1 AngⅡ to establish a model of myocardial hypertrophy. H9C2 cardiomyocytes were allocated into normal, model, inhibitor + Danhong injection, Danhong injection (20 mL·L-1), and inhibitor (SB203580, 5 μmol·L-1) groups. CCK-8 assay was used to detect the viability of H9C2 cardiomyocytes. Rhodamine-labeled phalloidin staining was used to reveal the area of cardiomyocytes. Real-time PCR was performed to determine the mRNA levels of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP). Western blot was used to assess the protein levels of p-p38 MAPK/p38 MAPK and p-NF-κB p65/NF-κB p65. ResultsIn vivo experiment: Compared with the sham operation group, the model group showed purplish-dark tongue with decreased R, G, B values of the tongue surface (P<0.01), increased whole blood viscosity (at low, medium, and high shear rates) (P<0.01), decreased left ventricular ejection fraction (LVEF) and left ventricular fractional shortening (LVFS) (P<0.01), increased left ventricular end-diastolic diameter (LVIDd), left ventricular end-systolic diameter (LVIDs), and left ventricular posterior wall thickness at end-diastole (LVPWd) (P<0.01), raised LVMI and HMI (P<0.01), and elevated levels of NT-proBNP, TNF-α, IL-6, and CRP in the serum and MMP-2 and MMP-9 in the myocardial tissue (P<0.01). The HE and Masson staining of the myocardial tissue showed compensatory myocardial hypertrophy, fibrosis, and massive inflammatory cell infiltration in the model group. Additionally, the model group presented up-regulated protein levels of p-p38 MAPK/p38 MAPK and p-NF-κB p65/NF-κB p65 in the myocardial tissue (P<0.01). Compared with the model group, each administration group showed increased R, G, B values of the tongue surface (P<0.05, P<0.01), decreased whole blood viscosity (at low, medium, and high shear rates) (P<0.05, P<0.01), increased LVEF and LVFS (P<0.01), decreased LVIDd, LVIDs, and LVPWd (P<0.05, P<0.01), declined LVMI and HMI (P<0.05, P<0.01), and lowered levels of NT-proBNP, TNF-α, IL-6, and CRP in the serum and MMP-2 and MMP-9 in the myocardial tissue (P<0.01). HE and Masson staining showed alleviated compensatory myocardial hypertrophy, reduced fibrosis, and decreased expression of p-p38 MAPK/p38 MAPK and p-NF-κB p65/NF-κB p65 in the myocardial tissue (P<0.01). In vitro experiment: When the concentration of Danhong injection reached 20 mL·L-1, the survival rate of H9C2 cardiomyocytes was the highest (P<0.01). Compared with the normal group, the model group showed up-regulated mRNA levels of ANP and BNP (P<0.01), increased relative cell surface area (P<0.01), and raised protein levels of p-p38 MAPK/p38 MAPK and p-NF-κB p65/NF-κB p65 (P<0.01). Compared with the model group, each administration group showed down-regulated mRNA levels of ANP and BNP (P<0.01), reduced relative cell surface area (P<0.05, P<0.01), and down-regulated protein levels of p-p38 MAPK/p38 MAPK and p-NF-κB p65/NF-κB p65 (P<0.05, P<0.01). ConclusionDanhong injection can regulate ventricular remodeling through the p38 MAPK/NF-κB pathway, thereby exerting a protective effect on the rat model of CHF with heart-blood stasis syndrome.
3.Neutrophil activation is correlated with acute kidney injury after cardiac surgery under cardiopulmonary bypass
Tingting WANG ; Yuanyuan YAO ; Jiayi SUN ; Juan WU ; Xinyi LIAO ; Wentong MENG ; Min YAN ; Lei DU ; Jiyue XIONG
Chinese Journal of Blood Transfusion 2025;38(3):358-367
[Objective] To explore the relationship between neutrophil activation under cardiopulmonary bypass (CPB) and the incidence of cardiac surgery-associated acute kidney injury (CS-AKI). [Methods] This prospective cohort study enrolled adult patients who scheduled for cardiac surgery under CPB at West China Hospital between May 1, 2022 and March 31, 2023. The primary outcome was acute kidney injury (AKI). Blood samples (5 mL) were obtained from the central vein before surgery, at rewarming, at the end of CPB, and 24 hours after surgery. Neutrophils were labeled with CD11b, CD54 and other markers. To assess the effect of neutrophils activation on AKI, propensity score matching (PSM) was employed to equilibrate covariates between the groups. [Results] A total of 120 patients included into the study, and 17 (14.2%) developed AKI. Both CD11b+ and CD54+ neutrophils significantly increased during the rewarming phase and the increases were kept until 24 hours after surgery. During rewarming, the numbers of CD11b+ neutrophils were significantly higher in AKI compared to non-AKI (4.71×109/L vs 3.31×109/L, Z=-2.14, P<0.05). Similarly, the CD54+ neutrophils counts were also significantly higher in AKI than in non-AKI before surgery (2.75×109/L vs 1.79×109/L, Z=-2.99, P<0.05), during rewarming (3.12×109/L vs 1.62×109/L, Z=-4.34, P<0.05), and at the end of CPB (4.28×109/L vs 2.14×109/L, Z=-3.91, P<0.05). An analysis of 32 matched patients (16 in each group) revealed that CD11b+ and CD54+ neutrophil levels of AKI were 1.74 folds (4.83×109/L vs 2.77×109/L, Z=-2.72, P<0.05) and 2.34 folds (3.32×109/L vs 1.42×109/L, Z=-4.12, P<0.05), respectively, of non-AKI at rewarming phase. [Conclusion] Neutrophils are activated during CPB, and they can be identified by CD11b/CD54 markers. The activated neutrophils of AKI patients are approximately 2 folds of non-AKI during the rewarming phase, with disparity reached peak between groups during rewarming. These findings suggest the removal of 50% of activated neutrophils during the rewarming phase may be effective to reduce the risk of AKI.
4.Danhong Injection Regulates Mitochondrial Dynamics in Rat Model of Chronic Heart Failure via AMPK/Drp1 Pathway
Jiahao YE ; Zizheng WU ; Yao ZHANG ; Lichong MENG ; Zhixi HU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(16):126-135
ObjectiveTo investigate the effects of Danhong injection on mitochondrial dynamics, morphology, and function in the rat model of chronic heart failure by mediating the adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK)/dynamin-related protein 1 (Drp1) pathway. MethodsFrom 75 SD rats, 15 rats were randomly selected as the sham group, and the remaining 60 rats were used to prepare a rat model of chronic heart failure by abdominal aortic constriction (AAC). The modeled rats were randomly allocated into model, Danhong Injection (6 mL·kg-1), and captopril (8.8 mg·kg-1) groups and administrated with corresponding agents for 15 consecutive days. The levels of N-terminal pro-brain natriuretic peptide (NT-pro BNP), adenosine diphosphate (ADP), adenosine triphosphate (ATP), interleukin (IL)-6, IL-1β, and tumor necrosis factor (TNF)-α and the activities of mitochondrial respiratory chain complexes Ⅰ-Ⅳ were determined by enzyme-linked immunosorbent assay. The changes in cardiac function were detected by echocardiography. The ultrastructural changes of myocardial mitochondria were observed by transmission electron microscopy. Western blot was employed to assess the protein levels of AMPK, p-AMPK, Drp1, p-Drp1, optic atrophy 1 (Opa1), mitofusin (Mfn2), and fission l (Fis1) in the myocardial tissue. Real-time PCR was performed to determine the mRNA levels of Opa1, Mfn2, and Fis1, and immunohistochemistry to detect the expression of p-AMPK. ResultsCompared with the sham group, the model group showed elevated levels of NT-pro BNP, ADP, TNF-α, IL-6, and IL-1β (P<0.01), declined ATP level (P<0.01), weakened activities of mitochondrial respiratory chain complexes Ⅰ-Ⅳ (P<0.01), decreased left ventricular ejection fraction (LVEF) and left ventricular fraction shortening (LVFS) (P<0.01), and increased left ventricular internal diameter at end-diastole (LVDd) and leaf ventricular internal diameter at end-systole (LVIDs) (P<0.01). Electron microscopy results showed that the model group presented heavily abnormal myocardial structure, with large areas of myofilament structure destroyed and dissolved, significantly enlarged residual structural gaps, and fragmented mitochondria. Western blot results showed that the model group demonstrated down-regulated protein levels of p-AMPK, Mfn2, and Opa1 (P<0.01) and up-regulated protein levels of p-Drp1 and Fis1 (P<0.01) in the myocardial tissue. Real-time PCR results showed that the model group presented up-regulated mRNA level of Fis1 (P<0.01) and down-regulated mRNA levels of Mfn2 and Opa1 (P<0.01). Immunohistochemistry results showed reduced expression of p-AMPK in the model group compared with sham group (P<0.01). Compared with the model group, Danhong injection lowered the levels of NT-pro BNP, ADP, TNF-α, IL-6, and IL-1β (P<0.01), raised the level of ATP (P<0.01), increased the activities of mitochondrial respiratory chain complexes Ⅰ-Ⅳ (P<0.05, P<0.01), increased the LVEF and LVFS (P<0.01), decreased the LVDd and LVIDs (P<0.05, P<0.01), alleviated mitochondrial damage, up-regulated the protein levels of p-AMPK, Mfn2, and Opa1 (P<0.05, P<0.01), down-regulated the protein levels of p-Drp1 and Fis1 (P<0.01), reduced the mRNA level of Fis1 (P<0.01), elevated the mRNA levels of Mfn2 and Opa1 (P<0.05, P<0.01), and promoted the expression of p-AMPK (P<0.05). ConclusionDanhong injection repairs the imbalance of mitochondrial dynamics, restores the mitochondrial function, improves the myocardial energy metabolism, and reduces the inflammatory response by regulating the AMPK/Drp1 pathway, thus improving the cardiac function.
5.Xuefu Zhuyu Decoction Improves Blood-Brain Barrier Integrity in Acute Traumatic Brain Injury Rats via Regulating Adenosine.
Yang WANG ; Qiu-Ju YAN ; En HU ; Yao WU ; Ruo-Qi DING ; Quan CHEN ; Meng-Han CHENG ; Xi-Ya YANG ; Tao TANG ; Teng LI
Chinese journal of integrative medicine 2025;31(7):624-634
OBJECTIVE:
To explore the neuroprotective effects of Xuefu Zhuyu Decoction (XFZYD) based on in vivo and metabolomics experiments.
METHODS:
Traumatic brain injury (TBI) was induced via a controlled cortical impact (CCI) method. Thirty rats were randomly divided into 3 groups (10 for each): sham, CCI and XFZYD groups (9 g/kg). The administration was performed by intragastric administration for 3 days. Neurological functions tests, histology staining, coagulation and haemorheology assays, and Western blot were examined. Untargeted metabolomics was employed to identify metabolites. The key metabolite was validated by enzyme-linked immunosorbent assay and immunofluorescence.
RESULTS:
XFZYD significantly alleviated neurological dysfunction in CCI model rats (P<0.01) but had no impact on coagulation function. As evidenced by Evans blue and IgG staining, XFZYD effectively prevented blood-brain barrier (BBB) disruption (P<0.05, P<0.01). Moreover, XFZYD not only increased the expression of collagen IV, occludin and zona occludens 1 but also decreased matrix metalloproteinase-9 (MMP-9) and cyclooxygenase-2 (COX-2), which protected BBB integrity (all P<0.05). Nine potential metabolites were identified, and all of them were reversed by XFZYD. Adenosine was the most significantly altered metabolite related to BBB repair. XFZYD significantly reduced the level of equilibrative nucleoside transporter 2 (ENT2) and increased adenosine (P<0.01), which may improve BBB integrity.
CONCLUSIONS
XFZYD ameliorates BBB disruption after TBI by decreasing the levels of MMP-9 and COX-2. Through further exploration via metabolomics, we found that XFZYD may exert a protective effect on BBB by regulating adenosine metabolism via ENT2.
Animals
;
Drugs, Chinese Herbal/therapeutic use*
;
Blood-Brain Barrier/metabolism*
;
Brain Injuries, Traumatic/metabolism*
;
Adenosine/metabolism*
;
Male
;
Rats, Sprague-Dawley
;
Rats
6.Quercetin Confers Protection against Sepsis-Related Acute Respiratory Distress Syndrome by Suppressing ROS/p38 MAPK Pathway.
Wei-Chao DING ; Juan CHEN ; Quan LI ; Yi REN ; Meng-Meng WANG ; Wei ZHANG ; Xiao-Hang JI ; Xin-Yao WU ; Shi-Nan NIE ; Chang-Bao HUANG ; Zhao-Rui SUN
Chinese journal of integrative medicine 2025;31(11):1011-1020
OBJECTIVE:
To identify the underlying mechanism by which quercetin (Que) alleviates sepsis-related acute respiratory distress syndrome (ARDS).
METHODS:
In vivo, C57BL/6 mice were assigned to sham, cecal ligation and puncture (CLP), and CLP+Que (50 mg/kg) groups (n=15 per group) by using a random number table. The sepsisrelated ARDS mouse model was established using the CLP method. In vitro, the murine alveolar macrophages (MH-S) cells were classified into control, lipopolysaccharide (LPS), LPS+Que (10 μmol/L), and LPS+Que+acetylcysteine (NAC, 5 mmol/L) groups. The effect of Que on oxidative stress, inflammation, and apoptosis in mice lungs and MH-S cells was determined, and the mechanism with reactive oxygen species (ROS)/p38 mitogen-activated protein kinase (MAPK) pathway was also explored both in vivo and in vitro.
RESULTS:
Que alleviated lung injury in mice, as reflected by a reversal of pulmonary histopathologic changes as well as a reduction in lung wet/dry weight ratio and neutrophil infiltration (P<0.05 or P<0.01). Additionally, Que improved the survival rate and relieved gas exchange impairment in mice (P<0.01). Que treatment also remarkedly reduced malondialdehyde formation, superoxide dismutase and catalase depletion, and cell apoptosis both in vivo and in vitro (P<0.05 or P<0.01). Moreover, Que treatment diminished the release of inflammatory factors interleukin (IL)-1β, tumor necrosis factor-α, and IL-6 both in vivo and in vitro (P<0.05 or P<0.01). Mechanistic investigation clarifified that Que administration led to a decline in the phosphorylation of p38 MAPK in addition to the suppression of ROS expression (P<0.01). Furthermore, in LPS-induced MH-S cells, ROS inhibitor NAC further inhibited ROS/p38 MAPK pathway, as well as oxidative stress, inflammation, and cell apoptosis on the basis of Que treatment (P<0.05 or P<0.01).
CONCLUSION
Que was found to exert anti-oxidative, anti-inflammatory, and anti-apoptotic effects by suppressing the ROS/p38 MAPK pathway, thereby conferring protection for mice against sepsis-related ARDS.
Animals
;
Sepsis/drug therapy*
;
Quercetin/therapeutic use*
;
Respiratory Distress Syndrome/enzymology*
;
p38 Mitogen-Activated Protein Kinases/metabolism*
;
Mice, Inbred C57BL
;
Reactive Oxygen Species/metabolism*
;
Apoptosis/drug effects*
;
Male
;
Oxidative Stress/drug effects*
;
MAP Kinase Signaling System/drug effects*
;
Lung/drug effects*
;
Mice
;
Lipopolysaccharides
;
Macrophages, Alveolar/pathology*
;
Inflammation/pathology*
;
Protective Agents/therapeutic use*
7.SOX11-mediated CBLN2 Upregulation Contributes to Neuropathic Pain through NF-κB-Driven Neuroinflammation in Dorsal Root Ganglia of Mice.
Ling-Jie MA ; Tian WANG ; Ting XIE ; Lin-Peng ZHU ; Zuo-Hao YAO ; Meng-Na LI ; Bao-Tong YUAN ; Xiao-Bo WU ; Yong-Jing GAO ; Yi-Bin QIN
Neuroscience Bulletin 2025;41(12):2201-2217
Neuropathic pain, a debilitating condition caused by dysfunction of the somatosensory nervous system, remains difficult to treat due to limited understanding of its molecular mechanisms. Bioinformatics analysis identified cerebellin 2 (CBLN2) as highly enriched in human and murine proprioceptive and nociceptive neurons. We found that CBLN2 expression is persistently upregulated in dorsal root ganglia (DRG) following spinal nerve ligation (SNL) in mice. In addition, transcription factor SOX11 binds to 12 cis-regulatory elements within the Cbln2 promoter to enhance its transcription. SNL also induced SOX11 upregulation, with SOX11 and CBLN2 co-localized in nociceptive neurons. The siRNA-mediated knockdown of Sox11 or Cbln2 attenuated SNL-induced mechanical allodynia and thermal hyperalgesia. High-throughput sequencing of DRG following intrathecal injection of CBLN2 revealed widespread gene expression changes, including upregulation of numerous NF-κB downstream targets. Consistently, CBLN2 activated NF-κB signaling, and inhibition with pyrrolidine dithiocarbamate reduced CBLN2-induced pain hypersensitivity, proinflammatory cytokines and chemokines production, and neuronal hyperexcitability. Together, these findings identified the SOX11/CBLN2/NF-κB axis as a critical mediator of neuropathic pain and a promising target for therapeutic intervention.
Animals
;
Neuralgia/metabolism*
;
Ganglia, Spinal/metabolism*
;
Up-Regulation
;
Mice
;
NF-kappa B/metabolism*
;
SOXC Transcription Factors/genetics*
;
Male
;
Neuroinflammatory Diseases/metabolism*
;
Mice, Inbred C57BL
;
Nerve Tissue Proteins/genetics*
;
Hyperalgesia/metabolism*
;
Signal Transduction
;
Spinal Nerves
8.Comprehensive Analysis of Oncogenic, Prognostic, and Immunological Roles of FANCD2 in Hepatocellular Carcinoma: A Potential Predictor for Survival and Immunotherapy.
Meng Jiao XU ; Wen DENG ; Ting Ting JIANG ; Shi Yu WANG ; Ru Yu LIU ; Min CHANG ; Shu Ling WU ; Ge SHEN ; Xiao Xue CHEN ; Yuan Jiao GAO ; Hongxiao HAO ; Lei Ping HU ; Lu ZHANG ; Yao LU ; Wei YI ; Yao XIE ; Ming Hui LI
Biomedical and Environmental Sciences 2025;38(3):313-327
OBJECTIVE:
Hepatocellular carcinoma (HCC) is sensitive to ferroptosis, a new form of programmed cell death that occurs in most tumor types. However, the mechanism through which ferroptosis modulates HCC remains unclear. This study aimed to investigate the oncogenic role and prognostic value of FANCD2 and provide novel insights into the prognostic assessment and prediction of immunotherapy.
METHODS:
Using clinicopathological parameters and bioinformatic techniques, we comprehensively examined the expression of FANCD2 macroscopically and microcosmically. We conducted univariate and multivariate Cox regression analyses to identify the prognostic value of FANCD2 in HCC and elucidated the detailed molecular mechanisms underlying the involvement of FANCD2 in oncogenesis by promoting iron-related death.
RESULTS:
FANCD2 was significantly upregulated in digestive system cancers with abundant immune infiltration. As an independent risk factor for HCC, a high FANCD2 expression level was associated with poor clinical outcomes and response to immune checkpoint blockade. Gene set enrichment analysis revealed that FANCD2 was mainly involved in the cell cycle and CYP450 metabolism.
CONCLUSION
To the best of our knowledge, this is the first study to comprehensively elucidate the oncogenic role of FANCD2. FANCD2 has a tumor-promoting aspect in the digestive system and acts as an independent risk factor in HCC; hence, it has recognized value for predicting tumor aggressiveness and prognosis and may be a potential biomarker for poor responsiveness to immunotherapy.
Humans
;
Carcinoma, Hepatocellular/diagnosis*
;
Liver Neoplasms/diagnosis*
;
Immunotherapy
;
Fanconi Anemia Complementation Group D2 Protein/metabolism*
;
Prognosis
;
Male
;
Female
;
Middle Aged
;
Biomarkers, Tumor/metabolism*
9.Investigation of Adductive Characteristics of Sulfur Mustards with Active Thiols
Meng-Yao ZHANG ; Jin-Long CAI ; Meng-Qiang GONG ; Bin XU ; Jian-Feng WU ; Hai-Xia WU ; Jian-Wei XIE
Chinese Journal of Analytical Chemistry 2024;52(7):995-1003,中插30-中插34
An analytical method based on ultra high performance liquid chromatography-high resolution tandem mass spectrometry(UHPLC-HRMS/MS)and high performance liquid chromatography-triple quadrupole mass spectrometry(HPLC-TQ MS)was established to reveal the characteristics of various sulfur mustard analogs with different active thiol molecules in CWC Schedule 1.A.04.Firstly,the toxic agents were prepared by micro-directed synthesis,and then the differences of the reactivity and abundance of formed adducts between different sulfur mustards and glutathione(GSH),cysteine(Cys)and N-acetylcysteine(NAC)in incubation solution,plasma and cell were investigated,respectively.The results indicated that all target sulfur mustards could react with three kinds of thiol molecules.The content of Cys and sulfur mustard adducts in plasma was higher than that of GSH and sulfur mustard adducts,while NAC and sulfur mustard adducts might have fewer types of adducts due to low content or poor mass spectrometry response.Additionally,the content of GSH and sulfur mustard adducts in exposed cells was higher than that of Cys,which should be due to the significant difference in the content of thiol molecules in plasma and cells.
10.Implementation of surveillance,prevention and control of healthcare-asso-ciated infection in maternal and child healthcare institutions:A nation-wide investigation report
Shuo LI ; Xi YAO ; Hui-Xue JIA ; Wei-Guang LI ; Xun HUANG ; Shu-Mei SUN ; Xi CHENG ; Qing-Lan MENG ; Xiang ZHANG ; Jing-Ping ZHANG ; Ya-Wei XING ; Qing-Qing JIANG ; Lian-Xuan WU ; Bing-Li ZHANG ; Xiao-Jing LIU ; Liu-Yi LI
Chinese Journal of Infection Control 2024;23(3):323-329
Objective To investigate the implementation of surveillance,prevention and control measures for healthcare-associated infection(HAI)in maternal and child healthcare(MCH)institutions,and provide policy evi-dence for optimizing HAI prevention and control in MCH institutions.Methods Stratified sampling was conducted among the MCH institutions at provincial,municipal and county levels in 8 provinces/autonomous regions.A uni-fied questionnaire was designed and the online survey was conducted through"Questionnaire Star".Results The data from 123 MCH institutions were included in the analysis.90.24%of the MCH institutions carried out compre-hensive surveillance on HAI.The ratios of MCH institutions which implemented targeted surveillance on HAI in neonatal intensive care unit(NICU),surgical site infection,multidrug-resistant organisms(MDROs)and HAI in intensive care units(non-NICU excluded)were 89.66%,85.96%,80.77%,and 74.19%,respectively.51.22%MCH institutions adopted information surveillance system on HAI cases.94.31%MCH institutions carried out surveillance on hand hygiene compliance.Over 90%MCH institutions carried out surveillance on environment hy-giene in high-risk departments.71.54%MCH institutions conducted centralized cleaning,disinfection,sterilization and supply for reusable medical instruments in the central sterile supply department(CSSD).Over 90%MCH insti-tutions established three-level pre-examination triage systems.86.18%set up transitional wards.MCH institutions generally adopted a management model with established effective communication,full appointment visits,and sepa-rate visits for special medical groups,such as registered pregnant women,high-risk newborns,healthcare groups,and long-term rehabilitation patients.However,the ratio of institutions conducting on-line follow-up visits was less than 50%.Conclusion MCH institutions have generally carried out comprehensive and targeted surveillance on HAI.Information surveillance need to be facilitated.Hand hygiene and environmental hygiene surveillance has been popularized to a certain extent at all levels of MCH institutions.The cleaning,disinfection,sterilization,and supply processes of reusable medical devices in a few MCH institutions are not standardized.Special medical populations get effective management.On-line healthcare is to be further promoted.

Result Analysis
Print
Save
E-mail